Description: The value of the predecessor class over NN0 . (Contributed by Scott Fenton, 9-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prednn0 | ⊢ ( 𝑁 ∈ ℕ0 → Pred ( < , ℕ0 , 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 2 | predeq2 | ⊢ ( ℕ0 = ( ℤ≥ ‘ 0 ) → Pred ( < , ℕ0 , 𝑁 ) = Pred ( < , ( ℤ≥ ‘ 0 ) , 𝑁 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ Pred ( < , ℕ0 , 𝑁 ) = Pred ( < , ( ℤ≥ ‘ 0 ) , 𝑁 ) |
| 4 | preduz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → Pred ( < , ( ℤ≥ ‘ 0 ) , 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) | |
| 5 | 3 4 | eqtrid | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → Pred ( < , ℕ0 , 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 6 | 5 1 | eleq2s | ⊢ ( 𝑁 ∈ ℕ0 → Pred ( < , ℕ0 , 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |