Description: The value of the predecessor class over NN0 . (Contributed by Scott Fenton, 9-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | prednn0 | |- ( N e. NN0 -> Pred ( < , NN0 , N ) = ( 0 ... ( N - 1 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
2 | predeq2 | |- ( NN0 = ( ZZ>= ` 0 ) -> Pred ( < , NN0 , N ) = Pred ( < , ( ZZ>= ` 0 ) , N ) ) |
|
3 | 1 2 | ax-mp | |- Pred ( < , NN0 , N ) = Pred ( < , ( ZZ>= ` 0 ) , N ) |
4 | preduz | |- ( N e. ( ZZ>= ` 0 ) -> Pred ( < , ( ZZ>= ` 0 ) , N ) = ( 0 ... ( N - 1 ) ) ) |
|
5 | 3 4 | eqtrid | |- ( N e. ( ZZ>= ` 0 ) -> Pred ( < , NN0 , N ) = ( 0 ... ( N - 1 ) ) ) |
6 | 5 1 | eleq2s | |- ( N e. NN0 -> Pred ( < , NN0 , N ) = ( 0 ... ( N - 1 ) ) ) |