Metamath Proof Explorer


Theorem prednn0

Description: The value of the predecessor class over NN0 . (Contributed by Scott Fenton, 9-May-2014)

Ref Expression
Assertion prednn0 N0Pred<0N=0N1

Proof

Step Hyp Ref Expression
1 nn0uz 0=0
2 predeq2 0=0Pred<0N=Pred<0N
3 1 2 ax-mp Pred<0N=Pred<0N
4 preduz N0Pred<0N=0N1
5 3 4 eqtrid N0Pred<0N=0N1
6 5 1 eleq2s N0Pred<0N=0N1