Description: The value of the predecessor class over the naturals. (Contributed by Scott Fenton, 6-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prednn | |- ( N e. NN -> Pred ( < , NN , N ) = ( 1 ... ( N - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 2 | predeq2 | |- ( NN = ( ZZ>= ` 1 ) -> Pred ( < , NN , N ) = Pred ( < , ( ZZ>= ` 1 ) , N ) ) |
|
| 3 | 1 2 | ax-mp | |- Pred ( < , NN , N ) = Pred ( < , ( ZZ>= ` 1 ) , N ) |
| 4 | elnnuz | |- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
|
| 5 | preduz | |- ( N e. ( ZZ>= ` 1 ) -> Pred ( < , ( ZZ>= ` 1 ) , N ) = ( 1 ... ( N - 1 ) ) ) |
|
| 6 | 4 5 | sylbi | |- ( N e. NN -> Pred ( < , ( ZZ>= ` 1 ) , N ) = ( 1 ... ( N - 1 ) ) ) |
| 7 | 3 6 | eqtrid | |- ( N e. NN -> Pred ( < , NN , N ) = ( 1 ... ( N - 1 ) ) ) |