Description: The primorial of 0. (Contributed by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmo0 | ⊢ ( #p ‘ 0 ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 2 | prmoval | ⊢ ( 0 ∈ ℕ0 → ( #p ‘ 0 ) = ∏ 𝑘 ∈ ( 1 ... 0 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( #p ‘ 0 ) = ∏ 𝑘 ∈ ( 1 ... 0 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) |
| 4 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 5 | 4 | prodeq1i | ⊢ ∏ 𝑘 ∈ ( 1 ... 0 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = ∏ 𝑘 ∈ ∅ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) |
| 6 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 | |
| 7 | 3 5 6 | 3eqtri | ⊢ ( #p ‘ 0 ) = 1 |