Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
⊢ 2 ∈ ℝ |
2 |
1
|
recni |
⊢ 2 ∈ ℂ |
3 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
4 |
3
|
recni |
⊢ ; 1 0 ∈ ℂ |
5 |
2 4
|
mulcli |
⊢ ( 2 · ; 1 0 ) ∈ ℂ |
6 |
|
5re |
⊢ 5 ∈ ℝ |
7 |
6
|
recni |
⊢ 5 ∈ ℂ |
8 |
|
1re |
⊢ 1 ∈ ℝ |
9 |
8
|
recni |
⊢ 1 ∈ ℂ |
10 |
9 4
|
mulcli |
⊢ ( 1 · ; 1 0 ) ∈ ℂ |
11 |
|
4re |
⊢ 4 ∈ ℝ |
12 |
11
|
recni |
⊢ 4 ∈ ℂ |
13 |
5 7 10 12
|
add4i |
⊢ ( ( ( 2 · ; 1 0 ) + 5 ) + ( ( 1 · ; 1 0 ) + 4 ) ) = ( ( ( 2 · ; 1 0 ) + ( 1 · ; 1 0 ) ) + ( 5 + 4 ) ) |
14 |
2 9 4
|
adddiri |
⊢ ( ( 2 + 1 ) · ; 1 0 ) = ( ( 2 · ; 1 0 ) + ( 1 · ; 1 0 ) ) |
15 |
14
|
eqcomi |
⊢ ( ( 2 · ; 1 0 ) + ( 1 · ; 1 0 ) ) = ( ( 2 + 1 ) · ; 1 0 ) |
16 |
|
5p4e9 |
⊢ ( 5 + 4 ) = 9 |
17 |
15 16
|
oveq12i |
⊢ ( ( ( 2 · ; 1 0 ) + ( 1 · ; 1 0 ) ) + ( 5 + 4 ) ) = ( ( ( 2 + 1 ) · ; 1 0 ) + 9 ) |
18 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
19 |
18
|
eqcomi |
⊢ ( 2 + 1 ) = 3 |
20 |
19
|
oveq1i |
⊢ ( ( 2 + 1 ) · ; 1 0 ) = ( 3 · ; 1 0 ) |
21 |
20
|
oveq1i |
⊢ ( ( ( 2 + 1 ) · ; 1 0 ) + 9 ) = ( ( 3 · ; 1 0 ) + 9 ) |
22 |
13 17 21
|
3eqtri |
⊢ ( ( ( 2 · ; 1 0 ) + 5 ) + ( ( 1 · ; 1 0 ) + 4 ) ) = ( ( 3 · ; 1 0 ) + 9 ) |