Metamath Proof Explorer


Theorem problem2

Description: Practice problem 2. Clues: oveq12i adddiri add4i mulcli recni 2re 3eqtri 10re 5re 1re 4re eqcomi 5p4e9 oveq1i df-3 . (Contributed by Filip Cernatescu, 16-Mar-2019) (Revised by AV, 9-Sep-2021) (Proof modification is discouraged.)

Ref Expression
Assertion problem2 ( ( ( 2 · 1 0 ) + 5 ) + ( ( 1 · 1 0 ) + 4 ) ) = ( ( 3 · 1 0 ) + 9 )

Proof

Step Hyp Ref Expression
1 2re 2 ∈ ℝ
2 1 recni 2 ∈ ℂ
3 10re 1 0 ∈ ℝ
4 3 recni 1 0 ∈ ℂ
5 2 4 mulcli ( 2 · 1 0 ) ∈ ℂ
6 5re 5 ∈ ℝ
7 6 recni 5 ∈ ℂ
8 1re 1 ∈ ℝ
9 8 recni 1 ∈ ℂ
10 9 4 mulcli ( 1 · 1 0 ) ∈ ℂ
11 4re 4 ∈ ℝ
12 11 recni 4 ∈ ℂ
13 5 7 10 12 add4i ( ( ( 2 · 1 0 ) + 5 ) + ( ( 1 · 1 0 ) + 4 ) ) = ( ( ( 2 · 1 0 ) + ( 1 · 1 0 ) ) + ( 5 + 4 ) )
14 2 9 4 adddiri ( ( 2 + 1 ) · 1 0 ) = ( ( 2 · 1 0 ) + ( 1 · 1 0 ) )
15 14 eqcomi ( ( 2 · 1 0 ) + ( 1 · 1 0 ) ) = ( ( 2 + 1 ) · 1 0 )
16 5p4e9 ( 5 + 4 ) = 9
17 15 16 oveq12i ( ( ( 2 · 1 0 ) + ( 1 · 1 0 ) ) + ( 5 + 4 ) ) = ( ( ( 2 + 1 ) · 1 0 ) + 9 )
18 df-3 3 = ( 2 + 1 )
19 18 eqcomi ( 2 + 1 ) = 3
20 19 oveq1i ( ( 2 + 1 ) · 1 0 ) = ( 3 · 1 0 )
21 20 oveq1i ( ( ( 2 + 1 ) · 1 0 ) + 9 ) = ( ( 3 · 1 0 ) + 9 )
22 13 17 21 3eqtri ( ( ( 2 · 1 0 ) + 5 ) + ( ( 1 · 1 0 ) + 4 ) ) = ( ( 3 · 1 0 ) + 9 )