Metamath Proof Explorer


Theorem problem2

Description: Practice problem 2. Clues: oveq12i adddiri add4i mulcli recni 2re 3eqtri 10re 5re 1re 4re eqcomi 5p4e9 oveq1i df-3 . (Contributed by Filip Cernatescu, 16-Mar-2019) (Revised by AV, 9-Sep-2021) (Proof modification is discouraged.)

Ref Expression
Assertion problem2 2 10 + 5 + 1 10 + 4 = 3 10 + 9

Proof

Step Hyp Ref Expression
1 2re 2
2 1 recni 2
3 10re 10
4 3 recni 10
5 2 4 mulcli 2 10
6 5re 5
7 6 recni 5
8 1re 1
9 8 recni 1
10 9 4 mulcli 1 10
11 4re 4
12 11 recni 4
13 5 7 10 12 add4i 2 10 + 5 + 1 10 + 4 = 2 10 + 1 10 + 5 + 4
14 2 9 4 adddiri 2 + 1 10 = 2 10 + 1 10
15 14 eqcomi 2 10 + 1 10 = 2 + 1 10
16 5p4e9 5 + 4 = 9
17 15 16 oveq12i 2 10 + 1 10 + 5 + 4 = 2 + 1 10 + 9
18 df-3 3 = 2 + 1
19 18 eqcomi 2 + 1 = 3
20 19 oveq1i 2 + 1 10 = 3 10
21 20 oveq1i 2 + 1 10 + 9 = 3 10 + 9
22 13 17 21 3eqtri 2 10 + 5 + 1 10 + 4 = 3 10 + 9