Metamath Proof Explorer


Theorem prtlem80

Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 17-Oct-2010)

Ref Expression
Assertion prtlem80 ( 𝐴𝐵 → ¬ 𝐴 ∈ ( 𝐶 ∖ { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 neldifsnd ( 𝐴𝐵 → ¬ 𝐴 ∈ ( 𝐶 ∖ { 𝐴 } ) )