Metamath Proof Explorer


Theorem brabsb2

Description: A closed form of brabsb . (Contributed by Rodolfo Medina, 13-Oct-2010)

Ref Expression
Assertion brabsb2 ( 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ( 𝑧 𝑅 𝑤 ↔ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 breq ( 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ( 𝑧 𝑅 𝑤𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑤 ) )
2 df-br ( 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑤 ↔ ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
3 1 2 bitrdi ( 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ( 𝑧 𝑅 𝑤 ↔ ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ) )
4 vopelopabsb ( ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )
5 3 4 bitrdi ( 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ( 𝑧 𝑅 𝑤 ↔ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) )