Description: A closed form of brabsb . (Contributed by Rodolfo Medina, 13-Oct-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | brabsb2 | |- ( R = { <. x , y >. | ph } -> ( z R w <-> [ z / x ] [ w / y ] ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq | |- ( R = { <. x , y >. | ph } -> ( z R w <-> z { <. x , y >. | ph } w ) ) |
|
2 | df-br | |- ( z { <. x , y >. | ph } w <-> <. z , w >. e. { <. x , y >. | ph } ) |
|
3 | 1 2 | bitrdi | |- ( R = { <. x , y >. | ph } -> ( z R w <-> <. z , w >. e. { <. x , y >. | ph } ) ) |
4 | vopelopabsb | |- ( <. z , w >. e. { <. x , y >. | ph } <-> [ z / x ] [ w / y ] ph ) |
|
5 | 3 4 | bitrdi | |- ( R = { <. x , y >. | ph } -> ( z R w <-> [ z / x ] [ w / y ] ph ) ) |