Metamath Proof Explorer


Theorem brabsb2

Description: A closed form of brabsb . (Contributed by Rodolfo Medina, 13-Oct-2010)

Ref Expression
Assertion brabsb2
|- ( R = { <. x , y >. | ph } -> ( z R w <-> [ z / x ] [ w / y ] ph ) )

Proof

Step Hyp Ref Expression
1 breq
 |-  ( R = { <. x , y >. | ph } -> ( z R w <-> z { <. x , y >. | ph } w ) )
2 df-br
 |-  ( z { <. x , y >. | ph } w <-> <. z , w >. e. { <. x , y >. | ph } )
3 1 2 bitrdi
 |-  ( R = { <. x , y >. | ph } -> ( z R w <-> <. z , w >. e. { <. x , y >. | ph } ) )
4 vopelopabsb
 |-  ( <. z , w >. e. { <. x , y >. | ph } <-> [ z / x ] [ w / y ] ph )
5 3 4 bitrdi
 |-  ( R = { <. x , y >. | ph } -> ( z R w <-> [ z / x ] [ w / y ] ph ) )