Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rodolfo Medina
Partitions
brabsb2
Next ⟩
eqbrrdv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
brabsb2
Description:
A closed form of
brabsb
.
(Contributed by
Rodolfo Medina
, 13-Oct-2010)
Ref
Expression
Assertion
brabsb2
⊢
R
=
x
y
|
φ
→
z
R
w
↔
z
x
w
y
φ
Proof
Step
Hyp
Ref
Expression
1
breq
⊢
R
=
x
y
|
φ
→
z
R
w
↔
z
x
y
|
φ
w
2
df-br
⊢
z
x
y
|
φ
w
↔
z
w
∈
x
y
|
φ
3
1
2
bitrdi
⊢
R
=
x
y
|
φ
→
z
R
w
↔
z
w
∈
x
y
|
φ
4
vopelopabsb
⊢
z
w
∈
x
y
|
φ
↔
z
x
w
y
φ
5
3
4
bitrdi
⊢
R
=
x
y
|
φ
→
z
R
w
↔
z
x
w
y
φ