Metamath Proof Explorer


Theorem brabsb2

Description: A closed form of brabsb . (Contributed by Rodolfo Medina, 13-Oct-2010)

Ref Expression
Assertion brabsb2 R=xy|φzRwzxwyφ

Proof

Step Hyp Ref Expression
1 breq R=xy|φzRwzxy|φw
2 df-br zxy|φwzwxy|φ
3 1 2 bitrdi R=xy|φzRwzwxy|φ
4 vopelopabsb zwxy|φzxwyφ
5 3 4 bitrdi R=xy|φzRwzxwyφ