Metamath Proof Explorer


Theorem psdval

Description: Evaluate the partial derivative of a power series. (Contributed by SN, 11-Apr-2025)

Ref Expression
Hypotheses psdval.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psdval.b 𝐵 = ( Base ‘ 𝑆 )
psdval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
psdval.x ( 𝜑𝑋𝐼 )
psdval.f ( 𝜑𝐹𝐵 )
Assertion psdval ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) = ( 𝑘𝐷 ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 psdval.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psdval.b 𝐵 = ( Base ‘ 𝑆 )
3 psdval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
4 psdval.x ( 𝜑𝑋𝐼 )
5 psdval.f ( 𝜑𝐹𝐵 )
6 fveq1 ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) = ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) )
7 6 oveq2d ( 𝑓 = 𝐹 → ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) = ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) )
8 7 mpteq2dv ( 𝑓 = 𝐹 → ( 𝑘𝐷 ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) = ( 𝑘𝐷 ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )
9 reldmpsr Rel dom mPwSer
10 9 1 2 elbasov ( 𝐹𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) )
11 5 10 syl ( 𝜑 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) )
12 11 simpld ( 𝜑𝐼 ∈ V )
13 11 simprd ( 𝜑𝑅 ∈ V )
14 1 2 3 12 13 4 psdfval ( 𝜑 → ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) = ( 𝑓𝐵 ↦ ( 𝑘𝐷 ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ) )
15 ovex ( ℕ0m 𝐼 ) ∈ V
16 3 15 rabex2 𝐷 ∈ V
17 16 mptex ( 𝑘𝐷 ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ∈ V
18 17 a1i ( 𝜑 → ( 𝑘𝐷 ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) ∈ V )
19 8 14 5 18 fvmptd4 ( 𝜑 → ( ( ( 𝐼 mPSDer 𝑅 ) ‘ 𝑋 ) ‘ 𝐹 ) = ( 𝑘𝐷 ↦ ( ( ( 𝑘𝑋 ) + 1 ) ( .g𝑅 ) ( 𝐹 ‘ ( 𝑘f + ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) ) ) )