Metamath Proof Explorer


Theorem psdval

Description: Evaluate the partial derivative of a power series. (Contributed by SN, 11-Apr-2025)

Ref Expression
Hypotheses psdval.s S = I mPwSer R
psdval.b B = Base S
psdval.d D = h 0 I | h -1 Fin
psdval.x φ X I
psdval.f φ F B
Assertion psdval φ I mPSDer R X F = k D k X + 1 R F k + f y I if y = X 1 0

Proof

Step Hyp Ref Expression
1 psdval.s S = I mPwSer R
2 psdval.b B = Base S
3 psdval.d D = h 0 I | h -1 Fin
4 psdval.x φ X I
5 psdval.f φ F B
6 fveq1 f = F f k + f y I if y = X 1 0 = F k + f y I if y = X 1 0
7 6 oveq2d f = F k X + 1 R f k + f y I if y = X 1 0 = k X + 1 R F k + f y I if y = X 1 0
8 7 mpteq2dv f = F k D k X + 1 R f k + f y I if y = X 1 0 = k D k X + 1 R F k + f y I if y = X 1 0
9 reldmpsr Rel dom mPwSer
10 9 1 2 elbasov F B I V R V
11 5 10 syl φ I V R V
12 11 simpld φ I V
13 11 simprd φ R V
14 1 2 3 12 13 4 psdfval φ I mPSDer R X = f B k D k X + 1 R f k + f y I if y = X 1 0
15 ovex 0 I V
16 3 15 rabex2 D V
17 16 mptex k D k X + 1 R F k + f y I if y = X 1 0 V
18 17 a1i φ k D k X + 1 R F k + f y I if y = X 1 0 V
19 8 14 5 18 fvmptd4 φ I mPSDer R X F = k D k X + 1 R F k + f y I if y = X 1 0