| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnprfval.0 | ⊢ 𝐷  =  { 1 ,  2 } | 
						
							| 2 |  | psgnprfval.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | psgnprfval.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 4 |  | psgnprfval.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 5 |  | psgnprfval.n | ⊢ 𝑁  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 6 |  | prex | ⊢ { 1 ,  2 }  ∈  V | 
						
							| 7 | 1 6 | eqeltri | ⊢ 𝐷  ∈  V | 
						
							| 8 | 2 | symgid | ⊢ ( 𝐷  ∈  V  →  (  I   ↾  𝐷 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ (  I   ↾  𝐷 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 10 | 9 | gsum0 | ⊢ ( 𝐺  Σg  ∅ )  =  (  I   ↾  𝐷 ) | 
						
							| 11 |  | reseq2 | ⊢ ( 𝐷  =  { 1 ,  2 }  →  (  I   ↾  𝐷 )  =  (  I   ↾  { 1 ,  2 } ) ) | 
						
							| 12 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 13 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 14 |  | residpr | ⊢ ( ( 1  ∈  V  ∧  2  ∈  ℕ )  →  (  I   ↾  { 1 ,  2 } )  =  { 〈 1 ,  1 〉 ,  〈 2 ,  2 〉 } ) | 
						
							| 15 | 12 13 14 | mp2an | ⊢ (  I   ↾  { 1 ,  2 } )  =  { 〈 1 ,  1 〉 ,  〈 2 ,  2 〉 } | 
						
							| 16 | 11 15 | eqtrdi | ⊢ ( 𝐷  =  { 1 ,  2 }  →  (  I   ↾  𝐷 )  =  { 〈 1 ,  1 〉 ,  〈 2 ,  2 〉 } ) | 
						
							| 17 | 1 16 | ax-mp | ⊢ (  I   ↾  𝐷 )  =  { 〈 1 ,  1 〉 ,  〈 2 ,  2 〉 } | 
						
							| 18 | 10 17 | eqtr2i | ⊢ { 〈 1 ,  1 〉 ,  〈 2 ,  2 〉 }  =  ( 𝐺  Σg  ∅ ) | 
						
							| 19 | 18 | fveq2i | ⊢ ( 𝑁 ‘ { 〈 1 ,  1 〉 ,  〈 2 ,  2 〉 } )  =  ( 𝑁 ‘ ( 𝐺  Σg  ∅ ) ) | 
						
							| 20 |  | wrd0 | ⊢ ∅  ∈  Word  𝑇 | 
						
							| 21 | 2 4 5 | psgnvalii | ⊢ ( ( 𝐷  ∈  V  ∧  ∅  ∈  Word  𝑇 )  →  ( 𝑁 ‘ ( 𝐺  Σg  ∅ ) )  =  ( - 1 ↑ ( ♯ ‘ ∅ ) ) ) | 
						
							| 22 | 7 20 21 | mp2an | ⊢ ( 𝑁 ‘ ( 𝐺  Σg  ∅ ) )  =  ( - 1 ↑ ( ♯ ‘ ∅ ) ) | 
						
							| 23 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 24 | 23 | oveq2i | ⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) )  =  ( - 1 ↑ 0 ) | 
						
							| 25 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 26 |  | exp0 | ⊢ ( - 1  ∈  ℂ  →  ( - 1 ↑ 0 )  =  1 ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ ( - 1 ↑ 0 )  =  1 | 
						
							| 28 | 24 27 | eqtri | ⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) )  =  1 | 
						
							| 29 | 19 22 28 | 3eqtri | ⊢ ( 𝑁 ‘ { 〈 1 ,  1 〉 ,  〈 2 ,  2 〉 } )  =  1 |