| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrbagres.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 2 |
|
psrbagres.e |
⊢ 𝐸 = { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } |
| 3 |
|
psrbagres.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
psrbagres.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 5 |
|
psrbagres.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 6 |
1
|
psrbagf |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 8 |
7 4
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
| 9 |
1
|
psrbagfsupp |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 finSupp 0 ) |
| 10 |
5 9
|
syl |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 11 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 12 |
10 11
|
fsuppres |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐽 ) finSupp 0 ) |
| 13 |
5
|
resexd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐽 ) ∈ V ) |
| 14 |
|
fcdmnn0fsuppg |
⊢ ( ( ( 𝐹 ↾ 𝐽 ) ∈ V ∧ ( 𝐹 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) → ( ( 𝐹 ↾ 𝐽 ) finSupp 0 ↔ ( ◡ ( 𝐹 ↾ 𝐽 ) “ ℕ ) ∈ Fin ) ) |
| 15 |
13 8 14
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐽 ) finSupp 0 ↔ ( ◡ ( 𝐹 ↾ 𝐽 ) “ ℕ ) ∈ Fin ) ) |
| 16 |
12 15
|
mpbid |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ↾ 𝐽 ) “ ℕ ) ∈ Fin ) |
| 17 |
3 4
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 18 |
2
|
psrbag |
⊢ ( 𝐽 ∈ V → ( ( 𝐹 ↾ 𝐽 ) ∈ 𝐸 ↔ ( ( 𝐹 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ∧ ( ◡ ( 𝐹 ↾ 𝐽 ) “ ℕ ) ∈ Fin ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐽 ) ∈ 𝐸 ↔ ( ( 𝐹 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ∧ ( ◡ ( 𝐹 ↾ 𝐽 ) “ ℕ ) ∈ Fin ) ) ) |
| 20 |
8 16 19
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐽 ) ∈ 𝐸 ) |