Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of Mendelson p. 235. (Contributed by NM, 23-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwin | ⊢ 𝒫 ( 𝐴 ∩ 𝐵 ) = ( 𝒫 𝐴 ∩ 𝒫 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssin | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ↔ 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 2 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 3 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵 ) | |
| 4 | 2 3 | anbi12i | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ 𝒫 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) | 
| 5 | velpw | ⊢ ( 𝑥 ∈ 𝒫 ( 𝐴 ∩ 𝐵 ) ↔ 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 6 | 1 4 5 | 3bitr4i | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ 𝒫 𝐵 ) ↔ 𝑥 ∈ 𝒫 ( 𝐴 ∩ 𝐵 ) ) | 
| 7 | 6 | ineqri | ⊢ ( 𝒫 𝐴 ∩ 𝒫 𝐵 ) = 𝒫 ( 𝐴 ∩ 𝐵 ) | 
| 8 | 7 | eqcomi | ⊢ 𝒫 ( 𝐴 ∩ 𝐵 ) = ( 𝒫 𝐴 ∩ 𝒫 𝐵 ) |