Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of Mendelson p. 235. (Contributed by NM, 23-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwin | |- ~P ( A i^i B ) = ( ~P A i^i ~P B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssin | |- ( ( x C_ A /\ x C_ B ) <-> x C_ ( A i^i B ) ) | |
| 2 | velpw | |- ( x e. ~P A <-> x C_ A ) | |
| 3 | velpw | |- ( x e. ~P B <-> x C_ B ) | |
| 4 | 2 3 | anbi12i | |- ( ( x e. ~P A /\ x e. ~P B ) <-> ( x C_ A /\ x C_ B ) ) | 
| 5 | velpw | |- ( x e. ~P ( A i^i B ) <-> x C_ ( A i^i B ) ) | |
| 6 | 1 4 5 | 3bitr4i | |- ( ( x e. ~P A /\ x e. ~P B ) <-> x e. ~P ( A i^i B ) ) | 
| 7 | 6 | ineqri | |- ( ~P A i^i ~P B ) = ~P ( A i^i B ) | 
| 8 | 7 | eqcomi | |- ~P ( A i^i B ) = ( ~P A i^i ~P B ) |