Metamath Proof Explorer


Theorem pwin

Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of Mendelson p. 235. (Contributed by NM, 23-Nov-2003)

Ref Expression
Assertion pwin
|- ~P ( A i^i B ) = ( ~P A i^i ~P B )

Proof

Step Hyp Ref Expression
1 ssin
 |-  ( ( x C_ A /\ x C_ B ) <-> x C_ ( A i^i B ) )
2 velpw
 |-  ( x e. ~P A <-> x C_ A )
3 velpw
 |-  ( x e. ~P B <-> x C_ B )
4 2 3 anbi12i
 |-  ( ( x e. ~P A /\ x e. ~P B ) <-> ( x C_ A /\ x C_ B ) )
5 velpw
 |-  ( x e. ~P ( A i^i B ) <-> x C_ ( A i^i B ) )
6 1 4 5 3bitr4i
 |-  ( ( x e. ~P A /\ x e. ~P B ) <-> x e. ~P ( A i^i B ) )
7 6 ineqri
 |-  ( ~P A i^i ~P B ) = ~P ( A i^i B )
8 7 eqcomi
 |-  ~P ( A i^i B ) = ( ~P A i^i ~P B )