Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of Mendelson p. 235. (Contributed by NM, 23-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | pwin | |- ~P ( A i^i B ) = ( ~P A i^i ~P B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssin | |- ( ( x C_ A /\ x C_ B ) <-> x C_ ( A i^i B ) ) |
|
2 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
3 | velpw | |- ( x e. ~P B <-> x C_ B ) |
|
4 | 2 3 | anbi12i | |- ( ( x e. ~P A /\ x e. ~P B ) <-> ( x C_ A /\ x C_ B ) ) |
5 | velpw | |- ( x e. ~P ( A i^i B ) <-> x C_ ( A i^i B ) ) |
|
6 | 1 4 5 | 3bitr4i | |- ( ( x e. ~P A /\ x e. ~P B ) <-> x e. ~P ( A i^i B ) ) |
7 | 6 | ineqri | |- ( ~P A i^i ~P B ) = ~P ( A i^i B ) |
8 | 7 | eqcomi | |- ~P ( A i^i B ) = ( ~P A i^i ~P B ) |