Metamath Proof Explorer


Theorem qabsabv

Description: The regular absolute value function on the rationals is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses qrng.q 𝑄 = ( ℂflds ℚ )
qabsabv.a 𝐴 = ( AbsVal ‘ 𝑄 )
Assertion qabsabv ( abs ↾ ℚ ) ∈ 𝐴

Proof

Step Hyp Ref Expression
1 qrng.q 𝑄 = ( ℂflds ℚ )
2 qabsabv.a 𝐴 = ( AbsVal ‘ 𝑄 )
3 absabv abs ∈ ( AbsVal ‘ ℂfld )
4 qsubdrg ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℚ ) ∈ DivRing )
5 4 simpli ℚ ∈ ( SubRing ‘ ℂfld )
6 eqid ( AbsVal ‘ ℂfld ) = ( AbsVal ‘ ℂfld )
7 6 1 2 abvres ( ( abs ∈ ( AbsVal ‘ ℂfld ) ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ) → ( abs ↾ ℚ ) ∈ 𝐴 )
8 3 5 7 mp2an ( abs ↾ ℚ ) ∈ 𝐴