Description: The regular absolute value function on the rationals is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 9-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qrng.q | ⊢ 𝑄 = ( ℂfld ↾s ℚ ) | |
qabsabv.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) | ||
Assertion | qabsabv | ⊢ ( abs ↾ ℚ ) ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qrng.q | ⊢ 𝑄 = ( ℂfld ↾s ℚ ) | |
2 | qabsabv.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) | |
3 | absabv | ⊢ abs ∈ ( AbsVal ‘ ℂfld ) | |
4 | qsubdrg | ⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) | |
5 | 4 | simpli | ⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
6 | eqid | ⊢ ( AbsVal ‘ ℂfld ) = ( AbsVal ‘ ℂfld ) | |
7 | 6 1 2 | abvres | ⊢ ( ( abs ∈ ( AbsVal ‘ ℂfld ) ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ) → ( abs ↾ ℚ ) ∈ 𝐴 ) |
8 | 3 5 7 | mp2an | ⊢ ( abs ↾ ℚ ) ∈ 𝐴 |