Metamath Proof Explorer


Theorem qabsabv

Description: The regular absolute value function on the rationals is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
Assertion qabsabv absA

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 absabv absAbsValfld
4 qsubdrg SubRingfldfld𝑠DivRing
5 4 simpli SubRingfld
6 eqid AbsValfld=AbsValfld
7 6 1 2 abvres absAbsValfldSubRingfldabsA
8 3 5 7 mp2an absA