Metamath Proof Explorer


Theorem qabsabv

Description: The regular absolute value function on the rationals is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses qrng.q
|- Q = ( CCfld |`s QQ )
qabsabv.a
|- A = ( AbsVal ` Q )
Assertion qabsabv
|- ( abs |` QQ ) e. A

Proof

Step Hyp Ref Expression
1 qrng.q
 |-  Q = ( CCfld |`s QQ )
2 qabsabv.a
 |-  A = ( AbsVal ` Q )
3 absabv
 |-  abs e. ( AbsVal ` CCfld )
4 qsubdrg
 |-  ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing )
5 4 simpli
 |-  QQ e. ( SubRing ` CCfld )
6 eqid
 |-  ( AbsVal ` CCfld ) = ( AbsVal ` CCfld )
7 6 1 2 abvres
 |-  ( ( abs e. ( AbsVal ` CCfld ) /\ QQ e. ( SubRing ` CCfld ) ) -> ( abs |` QQ ) e. A )
8 3 5 7 mp2an
 |-  ( abs |` QQ ) e. A