Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
2 |
|
qabsabv.a |
|- A = ( AbsVal ` Q ) |
3 |
|
padic.f |
|- F = ( x e. QQ |-> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) ) |
4 |
2
|
a1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> A = ( AbsVal ` Q ) ) |
5 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
6 |
5
|
a1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> QQ = ( Base ` Q ) ) |
7 |
|
qex |
|- QQ e. _V |
8 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
9 |
1 8
|
ressplusg |
|- ( QQ e. _V -> + = ( +g ` Q ) ) |
10 |
7 9
|
mp1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> + = ( +g ` Q ) ) |
11 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
12 |
1 11
|
ressmulr |
|- ( QQ e. _V -> x. = ( .r ` Q ) ) |
13 |
7 12
|
mp1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> x. = ( .r ` Q ) ) |
14 |
1
|
qrng0 |
|- 0 = ( 0g ` Q ) |
15 |
14
|
a1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> 0 = ( 0g ` Q ) ) |
16 |
1
|
qdrng |
|- Q e. DivRing |
17 |
|
drngring |
|- ( Q e. DivRing -> Q e. Ring ) |
18 |
16 17
|
mp1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> Q e. Ring ) |
19 |
|
0red |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ x = 0 ) -> 0 e. RR ) |
20 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
21 |
|
simpr |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N e. ( 0 (,) 1 ) ) |
22 |
20 21
|
sselid |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N e. RR ) |
23 |
22
|
ad2antrr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ -. x = 0 ) -> N e. RR ) |
24 |
|
eliooord |
|- ( N e. ( 0 (,) 1 ) -> ( 0 < N /\ N < 1 ) ) |
25 |
24
|
adantl |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> ( 0 < N /\ N < 1 ) ) |
26 |
25
|
simpld |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> 0 < N ) |
27 |
22 26
|
elrpd |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N e. RR+ ) |
28 |
27
|
rpne0d |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N =/= 0 ) |
29 |
28
|
ad2antrr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ -. x = 0 ) -> N =/= 0 ) |
30 |
|
df-ne |
|- ( x =/= 0 <-> -. x = 0 ) |
31 |
|
pcqcl |
|- ( ( P e. Prime /\ ( x e. QQ /\ x =/= 0 ) ) -> ( P pCnt x ) e. ZZ ) |
32 |
31
|
adantlr |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( x e. QQ /\ x =/= 0 ) ) -> ( P pCnt x ) e. ZZ ) |
33 |
32
|
anassrs |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ x =/= 0 ) -> ( P pCnt x ) e. ZZ ) |
34 |
30 33
|
sylan2br |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ -. x = 0 ) -> ( P pCnt x ) e. ZZ ) |
35 |
23 29 34
|
reexpclzd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ -. x = 0 ) -> ( N ^ ( P pCnt x ) ) e. RR ) |
36 |
19 35
|
ifclda |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) e. RR ) |
37 |
36 3
|
fmptd |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> F : QQ --> RR ) |
38 |
|
0z |
|- 0 e. ZZ |
39 |
|
zq |
|- ( 0 e. ZZ -> 0 e. QQ ) |
40 |
38 39
|
ax-mp |
|- 0 e. QQ |
41 |
|
iftrue |
|- ( x = 0 -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) = 0 ) |
42 |
|
c0ex |
|- 0 e. _V |
43 |
41 3 42
|
fvmpt |
|- ( 0 e. QQ -> ( F ` 0 ) = 0 ) |
44 |
40 43
|
mp1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> ( F ` 0 ) = 0 ) |
45 |
22
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> N e. RR ) |
46 |
|
pcqcl |
|- ( ( P e. Prime /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P pCnt y ) e. ZZ ) |
47 |
46
|
adantlr |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P pCnt y ) e. ZZ ) |
48 |
47
|
3impb |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> ( P pCnt y ) e. ZZ ) |
49 |
26
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> 0 < N ) |
50 |
|
expgt0 |
|- ( ( N e. RR /\ ( P pCnt y ) e. ZZ /\ 0 < N ) -> 0 < ( N ^ ( P pCnt y ) ) ) |
51 |
45 48 49 50
|
syl3anc |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> 0 < ( N ^ ( P pCnt y ) ) ) |
52 |
|
eqeq1 |
|- ( x = y -> ( x = 0 <-> y = 0 ) ) |
53 |
|
oveq2 |
|- ( x = y -> ( P pCnt x ) = ( P pCnt y ) ) |
54 |
53
|
oveq2d |
|- ( x = y -> ( N ^ ( P pCnt x ) ) = ( N ^ ( P pCnt y ) ) ) |
55 |
52 54
|
ifbieq2d |
|- ( x = y -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) = if ( y = 0 , 0 , ( N ^ ( P pCnt y ) ) ) ) |
56 |
|
ovex |
|- ( N ^ ( P pCnt y ) ) e. _V |
57 |
42 56
|
ifex |
|- if ( y = 0 , 0 , ( N ^ ( P pCnt y ) ) ) e. _V |
58 |
55 3 57
|
fvmpt |
|- ( y e. QQ -> ( F ` y ) = if ( y = 0 , 0 , ( N ^ ( P pCnt y ) ) ) ) |
59 |
58
|
3ad2ant2 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> ( F ` y ) = if ( y = 0 , 0 , ( N ^ ( P pCnt y ) ) ) ) |
60 |
|
simp3 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> y =/= 0 ) |
61 |
60
|
neneqd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> -. y = 0 ) |
62 |
61
|
iffalsed |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> if ( y = 0 , 0 , ( N ^ ( P pCnt y ) ) ) = ( N ^ ( P pCnt y ) ) ) |
63 |
59 62
|
eqtrd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> ( F ` y ) = ( N ^ ( P pCnt y ) ) ) |
64 |
51 63
|
breqtrrd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> 0 < ( F ` y ) ) |
65 |
|
pcqmul |
|- ( ( P e. Prime /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt ( y x. z ) ) = ( ( P pCnt y ) + ( P pCnt z ) ) ) |
66 |
65
|
3adant1r |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt ( y x. z ) ) = ( ( P pCnt y ) + ( P pCnt z ) ) ) |
67 |
66
|
oveq2d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( N ^ ( P pCnt ( y x. z ) ) ) = ( N ^ ( ( P pCnt y ) + ( P pCnt z ) ) ) ) |
68 |
22
|
recnd |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N e. CC ) |
69 |
68
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> N e. CC ) |
70 |
28
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> N =/= 0 ) |
71 |
47
|
3adant3 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt y ) e. ZZ ) |
72 |
|
simp1l |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> P e. Prime ) |
73 |
|
simp3l |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> z e. QQ ) |
74 |
|
simp3r |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> z =/= 0 ) |
75 |
|
pcqcl |
|- ( ( P e. Prime /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt z ) e. ZZ ) |
76 |
72 73 74 75
|
syl12anc |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt z ) e. ZZ ) |
77 |
|
expaddz |
|- ( ( ( N e. CC /\ N =/= 0 ) /\ ( ( P pCnt y ) e. ZZ /\ ( P pCnt z ) e. ZZ ) ) -> ( N ^ ( ( P pCnt y ) + ( P pCnt z ) ) ) = ( ( N ^ ( P pCnt y ) ) x. ( N ^ ( P pCnt z ) ) ) ) |
78 |
69 70 71 76 77
|
syl22anc |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( N ^ ( ( P pCnt y ) + ( P pCnt z ) ) ) = ( ( N ^ ( P pCnt y ) ) x. ( N ^ ( P pCnt z ) ) ) ) |
79 |
67 78
|
eqtrd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( N ^ ( P pCnt ( y x. z ) ) ) = ( ( N ^ ( P pCnt y ) ) x. ( N ^ ( P pCnt z ) ) ) ) |
80 |
|
simp2l |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> y e. QQ ) |
81 |
|
qmulcl |
|- ( ( y e. QQ /\ z e. QQ ) -> ( y x. z ) e. QQ ) |
82 |
80 73 81
|
syl2anc |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( y x. z ) e. QQ ) |
83 |
|
eqeq1 |
|- ( x = ( y x. z ) -> ( x = 0 <-> ( y x. z ) = 0 ) ) |
84 |
|
oveq2 |
|- ( x = ( y x. z ) -> ( P pCnt x ) = ( P pCnt ( y x. z ) ) ) |
85 |
84
|
oveq2d |
|- ( x = ( y x. z ) -> ( N ^ ( P pCnt x ) ) = ( N ^ ( P pCnt ( y x. z ) ) ) ) |
86 |
83 85
|
ifbieq2d |
|- ( x = ( y x. z ) -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) = if ( ( y x. z ) = 0 , 0 , ( N ^ ( P pCnt ( y x. z ) ) ) ) ) |
87 |
|
ovex |
|- ( N ^ ( P pCnt ( y x. z ) ) ) e. _V |
88 |
42 87
|
ifex |
|- if ( ( y x. z ) = 0 , 0 , ( N ^ ( P pCnt ( y x. z ) ) ) ) e. _V |
89 |
86 3 88
|
fvmpt |
|- ( ( y x. z ) e. QQ -> ( F ` ( y x. z ) ) = if ( ( y x. z ) = 0 , 0 , ( N ^ ( P pCnt ( y x. z ) ) ) ) ) |
90 |
82 89
|
syl |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` ( y x. z ) ) = if ( ( y x. z ) = 0 , 0 , ( N ^ ( P pCnt ( y x. z ) ) ) ) ) |
91 |
|
qcn |
|- ( y e. QQ -> y e. CC ) |
92 |
80 91
|
syl |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> y e. CC ) |
93 |
|
qcn |
|- ( z e. QQ -> z e. CC ) |
94 |
73 93
|
syl |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> z e. CC ) |
95 |
|
simp2r |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> y =/= 0 ) |
96 |
92 94 95 74
|
mulne0d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( y x. z ) =/= 0 ) |
97 |
96
|
neneqd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> -. ( y x. z ) = 0 ) |
98 |
97
|
iffalsed |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> if ( ( y x. z ) = 0 , 0 , ( N ^ ( P pCnt ( y x. z ) ) ) ) = ( N ^ ( P pCnt ( y x. z ) ) ) ) |
99 |
90 98
|
eqtrd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` ( y x. z ) ) = ( N ^ ( P pCnt ( y x. z ) ) ) ) |
100 |
63
|
3expb |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( F ` y ) = ( N ^ ( P pCnt y ) ) ) |
101 |
100
|
3adant3 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` y ) = ( N ^ ( P pCnt y ) ) ) |
102 |
|
eqeq1 |
|- ( x = z -> ( x = 0 <-> z = 0 ) ) |
103 |
|
oveq2 |
|- ( x = z -> ( P pCnt x ) = ( P pCnt z ) ) |
104 |
103
|
oveq2d |
|- ( x = z -> ( N ^ ( P pCnt x ) ) = ( N ^ ( P pCnt z ) ) ) |
105 |
102 104
|
ifbieq2d |
|- ( x = z -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) = if ( z = 0 , 0 , ( N ^ ( P pCnt z ) ) ) ) |
106 |
|
ovex |
|- ( N ^ ( P pCnt z ) ) e. _V |
107 |
42 106
|
ifex |
|- if ( z = 0 , 0 , ( N ^ ( P pCnt z ) ) ) e. _V |
108 |
105 3 107
|
fvmpt |
|- ( z e. QQ -> ( F ` z ) = if ( z = 0 , 0 , ( N ^ ( P pCnt z ) ) ) ) |
109 |
73 108
|
syl |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` z ) = if ( z = 0 , 0 , ( N ^ ( P pCnt z ) ) ) ) |
110 |
74
|
neneqd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> -. z = 0 ) |
111 |
110
|
iffalsed |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> if ( z = 0 , 0 , ( N ^ ( P pCnt z ) ) ) = ( N ^ ( P pCnt z ) ) ) |
112 |
109 111
|
eqtrd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` z ) = ( N ^ ( P pCnt z ) ) ) |
113 |
101 112
|
oveq12d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( ( F ` y ) x. ( F ` z ) ) = ( ( N ^ ( P pCnt y ) ) x. ( N ^ ( P pCnt z ) ) ) ) |
114 |
79 99 113
|
3eqtr4d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` ( y x. z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) |
115 |
|
iftrue |
|- ( ( y + z ) = 0 -> if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) = 0 ) |
116 |
115
|
breq1d |
|- ( ( y + z ) = 0 -> ( if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) <-> 0 <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) ) |
117 |
|
ifnefalse |
|- ( ( y + z ) =/= 0 -> if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) = ( N ^ ( P pCnt ( y + z ) ) ) ) |
118 |
117
|
adantl |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) = ( N ^ ( P pCnt ( y + z ) ) ) ) |
119 |
71
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt y ) e. ZZ ) |
120 |
119
|
zred |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt y ) e. RR ) |
121 |
76
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt z ) e. ZZ ) |
122 |
121
|
zred |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt z ) e. RR ) |
123 |
22
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> N e. RR ) |
124 |
123
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> N e. RR ) |
125 |
70
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> N =/= 0 ) |
126 |
72
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> P e. Prime ) |
127 |
|
qaddcl |
|- ( ( y e. QQ /\ z e. QQ ) -> ( y + z ) e. QQ ) |
128 |
80 73 127
|
syl2anc |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( y + z ) e. QQ ) |
129 |
128
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( y + z ) e. QQ ) |
130 |
|
simpr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( y + z ) =/= 0 ) |
131 |
|
pcqcl |
|- ( ( P e. Prime /\ ( ( y + z ) e. QQ /\ ( y + z ) =/= 0 ) ) -> ( P pCnt ( y + z ) ) e. ZZ ) |
132 |
126 129 130 131
|
syl12anc |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt ( y + z ) ) e. ZZ ) |
133 |
132
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( P pCnt ( y + z ) ) e. ZZ ) |
134 |
124 125 133
|
reexpclzd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) e. RR ) |
135 |
119
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( P pCnt y ) e. ZZ ) |
136 |
124 125 135
|
reexpclzd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( N ^ ( P pCnt y ) ) e. RR ) |
137 |
|
simpl1 |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P e. Prime /\ N e. ( 0 (,) 1 ) ) ) |
138 |
137 22
|
syl |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> N e. RR ) |
139 |
137 28
|
syl |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> N =/= 0 ) |
140 |
138 139 119
|
reexpclzd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt y ) ) e. RR ) |
141 |
138 139 121
|
reexpclzd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt z ) ) e. RR ) |
142 |
140 141
|
readdcld |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) e. RR ) |
143 |
142
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) e. RR ) |
144 |
126
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> P e. Prime ) |
145 |
80
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> y e. QQ ) |
146 |
73
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> z e. QQ ) |
147 |
|
simpr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( P pCnt y ) <_ ( P pCnt z ) ) |
148 |
144 145 146 147
|
pcadd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( P pCnt y ) <_ ( P pCnt ( y + z ) ) ) |
149 |
137 27
|
syl |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> N e. RR+ ) |
150 |
25
|
simprd |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N < 1 ) |
151 |
137 150
|
syl |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> N < 1 ) |
152 |
149 119 132 151
|
ltexp2rd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt ( y + z ) ) < ( P pCnt y ) <-> ( N ^ ( P pCnt y ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
153 |
152
|
notbid |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( -. ( P pCnt ( y + z ) ) < ( P pCnt y ) <-> -. ( N ^ ( P pCnt y ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
154 |
132
|
zred |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt ( y + z ) ) e. RR ) |
155 |
120 154
|
lenltd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt y ) <_ ( P pCnt ( y + z ) ) <-> -. ( P pCnt ( y + z ) ) < ( P pCnt y ) ) ) |
156 |
138 139 132
|
reexpclzd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt ( y + z ) ) ) e. RR ) |
157 |
156 140
|
lenltd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt y ) ) <-> -. ( N ^ ( P pCnt y ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
158 |
153 155 157
|
3bitr4d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt y ) <_ ( P pCnt ( y + z ) ) <-> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt y ) ) ) ) |
159 |
158
|
biimpa |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt ( y + z ) ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt y ) ) ) |
160 |
148 159
|
syldan |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt y ) ) ) |
161 |
27
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> N e. RR+ ) |
162 |
161 76
|
rpexpcld |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( N ^ ( P pCnt z ) ) e. RR+ ) |
163 |
162
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt z ) ) e. RR+ ) |
164 |
163
|
rpge0d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> 0 <_ ( N ^ ( P pCnt z ) ) ) |
165 |
140 141
|
addge01d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( 0 <_ ( N ^ ( P pCnt z ) ) <-> ( N ^ ( P pCnt y ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) ) |
166 |
164 165
|
mpbid |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt y ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
167 |
166
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( N ^ ( P pCnt y ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
168 |
134 136 143 160 167
|
letrd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
169 |
156
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) e. RR ) |
170 |
141
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( N ^ ( P pCnt z ) ) e. RR ) |
171 |
142
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) e. RR ) |
172 |
126
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> P e. Prime ) |
173 |
73
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> z e. QQ ) |
174 |
80
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> y e. QQ ) |
175 |
|
simpr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( P pCnt z ) <_ ( P pCnt y ) ) |
176 |
172 173 174 175
|
pcadd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( P pCnt z ) <_ ( P pCnt ( z + y ) ) ) |
177 |
92 94
|
addcomd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( y + z ) = ( z + y ) ) |
178 |
177
|
oveq2d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt ( y + z ) ) = ( P pCnt ( z + y ) ) ) |
179 |
178
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( P pCnt ( y + z ) ) = ( P pCnt ( z + y ) ) ) |
180 |
176 179
|
breqtrrd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( P pCnt z ) <_ ( P pCnt ( y + z ) ) ) |
181 |
149 121 132 151
|
ltexp2rd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt ( y + z ) ) < ( P pCnt z ) <-> ( N ^ ( P pCnt z ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
182 |
181
|
notbid |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( -. ( P pCnt ( y + z ) ) < ( P pCnt z ) <-> -. ( N ^ ( P pCnt z ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
183 |
122 154
|
lenltd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt z ) <_ ( P pCnt ( y + z ) ) <-> -. ( P pCnt ( y + z ) ) < ( P pCnt z ) ) ) |
184 |
156 141
|
lenltd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt z ) ) <-> -. ( N ^ ( P pCnt z ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
185 |
182 183 184
|
3bitr4d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt z ) <_ ( P pCnt ( y + z ) ) <-> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt z ) ) ) ) |
186 |
185
|
biimpa |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt ( y + z ) ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt z ) ) ) |
187 |
180 186
|
syldan |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt z ) ) ) |
188 |
161 71
|
rpexpcld |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( N ^ ( P pCnt y ) ) e. RR+ ) |
189 |
188
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt y ) ) e. RR+ ) |
190 |
189
|
rpge0d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> 0 <_ ( N ^ ( P pCnt y ) ) ) |
191 |
141 140
|
addge02d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( 0 <_ ( N ^ ( P pCnt y ) ) <-> ( N ^ ( P pCnt z ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) ) |
192 |
190 191
|
mpbid |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt z ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
193 |
192
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( N ^ ( P pCnt z ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
194 |
169 170 171 187 193
|
letrd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
195 |
120 122 168 194
|
lecasei |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
196 |
118 195
|
eqbrtrd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
197 |
188 162
|
rpaddcld |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) e. RR+ ) |
198 |
197
|
rpge0d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> 0 <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
199 |
116 196 198
|
pm2.61ne |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
200 |
|
eqeq1 |
|- ( x = ( y + z ) -> ( x = 0 <-> ( y + z ) = 0 ) ) |
201 |
|
oveq2 |
|- ( x = ( y + z ) -> ( P pCnt x ) = ( P pCnt ( y + z ) ) ) |
202 |
201
|
oveq2d |
|- ( x = ( y + z ) -> ( N ^ ( P pCnt x ) ) = ( N ^ ( P pCnt ( y + z ) ) ) ) |
203 |
200 202
|
ifbieq2d |
|- ( x = ( y + z ) -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) = if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
204 |
|
ovex |
|- ( N ^ ( P pCnt ( y + z ) ) ) e. _V |
205 |
42 204
|
ifex |
|- if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) e. _V |
206 |
203 3 205
|
fvmpt |
|- ( ( y + z ) e. QQ -> ( F ` ( y + z ) ) = if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
207 |
128 206
|
syl |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` ( y + z ) ) = if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
208 |
101 112
|
oveq12d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( ( F ` y ) + ( F ` z ) ) = ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
209 |
199 207 208
|
3brtr4d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` ( y + z ) ) <_ ( ( F ` y ) + ( F ` z ) ) ) |
210 |
4 6 10 13 15 18 37 44 64 114 209
|
isabvd |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> F e. A ) |