| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcadd.1 |
|- ( ph -> P e. Prime ) |
| 2 |
|
pcadd.2 |
|- ( ph -> A e. QQ ) |
| 3 |
|
pcadd.3 |
|- ( ph -> B e. QQ ) |
| 4 |
|
pcadd.4 |
|- ( ph -> ( P pCnt A ) <_ ( P pCnt B ) ) |
| 5 |
|
elq |
|- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
| 6 |
2 5
|
sylib |
|- ( ph -> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
| 7 |
|
elq |
|- ( B e. QQ <-> E. z e. ZZ E. w e. NN B = ( z / w ) ) |
| 8 |
3 7
|
sylib |
|- ( ph -> E. z e. ZZ E. w e. NN B = ( z / w ) ) |
| 9 |
|
pcxcl |
|- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt A ) e. RR* ) |
| 10 |
1 2 9
|
syl2anc |
|- ( ph -> ( P pCnt A ) e. RR* ) |
| 11 |
10
|
xrleidd |
|- ( ph -> ( P pCnt A ) <_ ( P pCnt A ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ B = 0 ) -> ( P pCnt A ) <_ ( P pCnt A ) ) |
| 13 |
|
oveq2 |
|- ( B = 0 -> ( A + B ) = ( A + 0 ) ) |
| 14 |
|
qcn |
|- ( A e. QQ -> A e. CC ) |
| 15 |
2 14
|
syl |
|- ( ph -> A e. CC ) |
| 16 |
15
|
addridd |
|- ( ph -> ( A + 0 ) = A ) |
| 17 |
13 16
|
sylan9eqr |
|- ( ( ph /\ B = 0 ) -> ( A + B ) = A ) |
| 18 |
17
|
oveq2d |
|- ( ( ph /\ B = 0 ) -> ( P pCnt ( A + B ) ) = ( P pCnt A ) ) |
| 19 |
12 18
|
breqtrrd |
|- ( ( ph /\ B = 0 ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |
| 20 |
19
|
a1d |
|- ( ( ph /\ B = 0 ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 21 |
|
reeanv |
|- ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) <-> ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) ) |
| 22 |
|
reeanv |
|- ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) <-> ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) ) |
| 23 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. Prime ) |
| 24 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 25 |
23 24
|
syl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. NN ) |
| 26 |
|
simplrl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x e. ZZ ) |
| 27 |
|
simprrl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A = ( x / y ) ) |
| 28 |
|
pc0 |
|- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
| 29 |
23 28
|
syl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt 0 ) = +oo ) |
| 30 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B e. QQ ) |
| 31 |
|
simpllr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B =/= 0 ) |
| 32 |
|
pcqcl |
|- ( ( P e. Prime /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. ZZ ) |
| 33 |
23 30 31 32
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. ZZ ) |
| 34 |
33
|
zred |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. RR ) |
| 35 |
|
ltpnf |
|- ( ( P pCnt B ) e. RR -> ( P pCnt B ) < +oo ) |
| 36 |
|
rexr |
|- ( ( P pCnt B ) e. RR -> ( P pCnt B ) e. RR* ) |
| 37 |
|
pnfxr |
|- +oo e. RR* |
| 38 |
|
xrltnle |
|- ( ( ( P pCnt B ) e. RR* /\ +oo e. RR* ) -> ( ( P pCnt B ) < +oo <-> -. +oo <_ ( P pCnt B ) ) ) |
| 39 |
36 37 38
|
sylancl |
|- ( ( P pCnt B ) e. RR -> ( ( P pCnt B ) < +oo <-> -. +oo <_ ( P pCnt B ) ) ) |
| 40 |
35 39
|
mpbid |
|- ( ( P pCnt B ) e. RR -> -. +oo <_ ( P pCnt B ) ) |
| 41 |
34 40
|
syl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. +oo <_ ( P pCnt B ) ) |
| 42 |
29 41
|
eqnbrtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. ( P pCnt 0 ) <_ ( P pCnt B ) ) |
| 43 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |
| 44 |
|
oveq2 |
|- ( A = 0 -> ( P pCnt A ) = ( P pCnt 0 ) ) |
| 45 |
44
|
breq1d |
|- ( A = 0 -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P pCnt 0 ) <_ ( P pCnt B ) ) ) |
| 46 |
43 45
|
syl5ibcom |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A = 0 -> ( P pCnt 0 ) <_ ( P pCnt B ) ) ) |
| 47 |
46
|
necon3bd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( -. ( P pCnt 0 ) <_ ( P pCnt B ) -> A =/= 0 ) ) |
| 48 |
42 47
|
mpd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A =/= 0 ) |
| 49 |
27 48
|
eqnetrrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x / y ) =/= 0 ) |
| 50 |
|
simprll |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. NN ) |
| 51 |
50
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. CC ) |
| 52 |
50
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y =/= 0 ) |
| 53 |
51 52
|
div0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( 0 / y ) = 0 ) |
| 54 |
|
oveq1 |
|- ( x = 0 -> ( x / y ) = ( 0 / y ) ) |
| 55 |
54
|
eqeq1d |
|- ( x = 0 -> ( ( x / y ) = 0 <-> ( 0 / y ) = 0 ) ) |
| 56 |
53 55
|
syl5ibrcom |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x = 0 -> ( x / y ) = 0 ) ) |
| 57 |
56
|
necon3d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / y ) =/= 0 -> x =/= 0 ) ) |
| 58 |
49 57
|
mpd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x =/= 0 ) |
| 59 |
|
pczcl |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) e. NN0 ) |
| 60 |
23 26 58 59
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt x ) e. NN0 ) |
| 61 |
25 60
|
nnexpcld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. NN ) |
| 62 |
61
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. CC ) |
| 63 |
62 51
|
mulcomd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt x ) ) x. y ) = ( y x. ( P ^ ( P pCnt x ) ) ) ) |
| 64 |
63
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( ( P ^ ( P pCnt x ) ) x. y ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) |
| 65 |
26
|
zcnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x e. CC ) |
| 66 |
23 50
|
pccld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt y ) e. NN0 ) |
| 67 |
25 66
|
nnexpcld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. NN ) |
| 68 |
67
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. CC ) |
| 69 |
61
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) =/= 0 ) |
| 70 |
67
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) =/= 0 ) |
| 71 |
65 62 51 68 69 70 52
|
divdivdivd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( ( P ^ ( P pCnt x ) ) x. y ) ) ) |
| 72 |
27
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) = ( P pCnt ( x / y ) ) ) |
| 73 |
|
pcdiv |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
| 74 |
23 26 58 50 73
|
syl121anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
| 75 |
72 74
|
eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
| 76 |
75
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) = ( P ^ ( ( P pCnt x ) - ( P pCnt y ) ) ) ) |
| 77 |
25
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. CC ) |
| 78 |
25
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P =/= 0 ) |
| 79 |
66
|
nn0zd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt y ) e. ZZ ) |
| 80 |
60
|
nn0zd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt x ) e. ZZ ) |
| 81 |
77 78 79 80
|
expsubd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( ( P pCnt x ) - ( P pCnt y ) ) ) = ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) |
| 82 |
76 81
|
eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) = ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) |
| 83 |
82
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( P ^ ( P pCnt A ) ) ) = ( A / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) ) |
| 84 |
27
|
oveq1d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) = ( ( x / y ) / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) ) |
| 85 |
65 51 62 68 52 70 69
|
divdivdivd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / y ) / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) |
| 86 |
83 84 85
|
3eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( P ^ ( P pCnt A ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) |
| 87 |
64 71 86
|
3eqtr4d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) = ( A / ( P ^ ( P pCnt A ) ) ) ) |
| 88 |
87
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt A ) ) x. ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) ) = ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) ) |
| 89 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A e. QQ ) |
| 90 |
89 14
|
syl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A e. CC ) |
| 91 |
|
pcqcl |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt A ) e. ZZ ) |
| 92 |
23 89 48 91
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) e. ZZ ) |
| 93 |
77 78 92
|
expclzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) e. CC ) |
| 94 |
77 78 92
|
expne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) =/= 0 ) |
| 95 |
90 93 94
|
divcan2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) = A ) |
| 96 |
88 95
|
eqtr2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A = ( ( P ^ ( P pCnt A ) ) x. ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) ) ) |
| 97 |
|
simplrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z e. ZZ ) |
| 98 |
|
simprrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B = ( z / w ) ) |
| 99 |
98 31
|
eqnetrrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z / w ) =/= 0 ) |
| 100 |
|
simprlr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. NN ) |
| 101 |
100
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. CC ) |
| 102 |
100
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w =/= 0 ) |
| 103 |
101 102
|
div0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( 0 / w ) = 0 ) |
| 104 |
|
oveq1 |
|- ( z = 0 -> ( z / w ) = ( 0 / w ) ) |
| 105 |
104
|
eqeq1d |
|- ( z = 0 -> ( ( z / w ) = 0 <-> ( 0 / w ) = 0 ) ) |
| 106 |
103 105
|
syl5ibrcom |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z = 0 -> ( z / w ) = 0 ) ) |
| 107 |
106
|
necon3d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / w ) =/= 0 -> z =/= 0 ) ) |
| 108 |
99 107
|
mpd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z =/= 0 ) |
| 109 |
|
pczcl |
|- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P pCnt z ) e. NN0 ) |
| 110 |
23 97 108 109
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt z ) e. NN0 ) |
| 111 |
25 110
|
nnexpcld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. NN ) |
| 112 |
111
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. CC ) |
| 113 |
112 101
|
mulcomd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt z ) ) x. w ) = ( w x. ( P ^ ( P pCnt z ) ) ) ) |
| 114 |
113
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( ( P ^ ( P pCnt z ) ) x. w ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) |
| 115 |
97
|
zcnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z e. CC ) |
| 116 |
23 100
|
pccld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt w ) e. NN0 ) |
| 117 |
25 116
|
nnexpcld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. NN ) |
| 118 |
117
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. CC ) |
| 119 |
111
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) =/= 0 ) |
| 120 |
117
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) =/= 0 ) |
| 121 |
115 112 101 118 119 120 102
|
divdivdivd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( ( P ^ ( P pCnt z ) ) x. w ) ) ) |
| 122 |
98
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) = ( P pCnt ( z / w ) ) ) |
| 123 |
|
pcdiv |
|- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) /\ w e. NN ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
| 124 |
23 97 108 100 123
|
syl121anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
| 125 |
122 124
|
eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
| 126 |
125
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) = ( P ^ ( ( P pCnt z ) - ( P pCnt w ) ) ) ) |
| 127 |
116
|
nn0zd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt w ) e. ZZ ) |
| 128 |
110
|
nn0zd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt z ) e. ZZ ) |
| 129 |
77 78 127 128
|
expsubd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( ( P pCnt z ) - ( P pCnt w ) ) ) = ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) |
| 130 |
126 129
|
eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) = ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) |
| 131 |
130
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( P ^ ( P pCnt B ) ) ) = ( B / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) ) |
| 132 |
98
|
oveq1d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) = ( ( z / w ) / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) ) |
| 133 |
115 101 112 118 102 120 119
|
divdivdivd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / w ) / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) |
| 134 |
131 132 133
|
3eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( P ^ ( P pCnt B ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) |
| 135 |
114 121 134
|
3eqtr4d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) = ( B / ( P ^ ( P pCnt B ) ) ) ) |
| 136 |
135
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt B ) ) x. ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) ) = ( ( P ^ ( P pCnt B ) ) x. ( B / ( P ^ ( P pCnt B ) ) ) ) ) |
| 137 |
|
qcn |
|- ( B e. QQ -> B e. CC ) |
| 138 |
30 137
|
syl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B e. CC ) |
| 139 |
77 78 33
|
expclzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) e. CC ) |
| 140 |
77 78 33
|
expne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) =/= 0 ) |
| 141 |
138 139 140
|
divcan2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt B ) ) x. ( B / ( P ^ ( P pCnt B ) ) ) ) = B ) |
| 142 |
136 141
|
eqtr2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B = ( ( P ^ ( P pCnt B ) ) x. ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) ) ) |
| 143 |
|
eluz |
|- ( ( ( P pCnt A ) e. ZZ /\ ( P pCnt B ) e. ZZ ) -> ( ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) <-> ( P pCnt A ) <_ ( P pCnt B ) ) ) |
| 144 |
92 33 143
|
syl2anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) <-> ( P pCnt A ) <_ ( P pCnt B ) ) ) |
| 145 |
43 144
|
mpbird |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) ) |
| 146 |
|
pczdvds |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P ^ ( P pCnt x ) ) || x ) |
| 147 |
23 26 58 146
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) || x ) |
| 148 |
61
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. ZZ ) |
| 149 |
|
dvdsval2 |
|- ( ( ( P ^ ( P pCnt x ) ) e. ZZ /\ ( P ^ ( P pCnt x ) ) =/= 0 /\ x e. ZZ ) -> ( ( P ^ ( P pCnt x ) ) || x <-> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) ) |
| 150 |
148 69 26 149
|
syl3anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt x ) ) || x <-> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) ) |
| 151 |
147 150
|
mpbid |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) |
| 152 |
|
pczndvds2 |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) |
| 153 |
23 26 58 152
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) |
| 154 |
151 153
|
jca |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ /\ -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) ) |
| 155 |
|
pcdvds |
|- ( ( P e. Prime /\ y e. NN ) -> ( P ^ ( P pCnt y ) ) || y ) |
| 156 |
23 50 155
|
syl2anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) || y ) |
| 157 |
67
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. ZZ ) |
| 158 |
50
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. ZZ ) |
| 159 |
|
dvdsval2 |
|- ( ( ( P ^ ( P pCnt y ) ) e. ZZ /\ ( P ^ ( P pCnt y ) ) =/= 0 /\ y e. ZZ ) -> ( ( P ^ ( P pCnt y ) ) || y <-> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) ) |
| 160 |
157 70 158 159
|
syl3anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt y ) ) || y <-> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) ) |
| 161 |
156 160
|
mpbid |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) |
| 162 |
50
|
nnred |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. RR ) |
| 163 |
67
|
nnred |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. RR ) |
| 164 |
50
|
nngt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < y ) |
| 165 |
67
|
nngt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( P ^ ( P pCnt y ) ) ) |
| 166 |
162 163 164 165
|
divgt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( y / ( P ^ ( P pCnt y ) ) ) ) |
| 167 |
|
elnnz |
|- ( ( y / ( P ^ ( P pCnt y ) ) ) e. NN <-> ( ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ /\ 0 < ( y / ( P ^ ( P pCnt y ) ) ) ) ) |
| 168 |
161 166 167
|
sylanbrc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( y / ( P ^ ( P pCnt y ) ) ) e. NN ) |
| 169 |
|
pcndvds2 |
|- ( ( P e. Prime /\ y e. NN ) -> -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) |
| 170 |
23 50 169
|
syl2anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) |
| 171 |
168 170
|
jca |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( y / ( P ^ ( P pCnt y ) ) ) e. NN /\ -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) ) |
| 172 |
|
pczdvds |
|- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P ^ ( P pCnt z ) ) || z ) |
| 173 |
23 97 108 172
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) || z ) |
| 174 |
111
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. ZZ ) |
| 175 |
|
dvdsval2 |
|- ( ( ( P ^ ( P pCnt z ) ) e. ZZ /\ ( P ^ ( P pCnt z ) ) =/= 0 /\ z e. ZZ ) -> ( ( P ^ ( P pCnt z ) ) || z <-> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) ) |
| 176 |
174 119 97 175
|
syl3anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt z ) ) || z <-> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) ) |
| 177 |
173 176
|
mpbid |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) |
| 178 |
|
pczndvds2 |
|- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) |
| 179 |
23 97 108 178
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) |
| 180 |
177 179
|
jca |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ /\ -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) ) |
| 181 |
|
pcdvds |
|- ( ( P e. Prime /\ w e. NN ) -> ( P ^ ( P pCnt w ) ) || w ) |
| 182 |
23 100 181
|
syl2anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) || w ) |
| 183 |
117
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. ZZ ) |
| 184 |
100
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. ZZ ) |
| 185 |
|
dvdsval2 |
|- ( ( ( P ^ ( P pCnt w ) ) e. ZZ /\ ( P ^ ( P pCnt w ) ) =/= 0 /\ w e. ZZ ) -> ( ( P ^ ( P pCnt w ) ) || w <-> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) ) |
| 186 |
183 120 184 185
|
syl3anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt w ) ) || w <-> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) ) |
| 187 |
182 186
|
mpbid |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) |
| 188 |
100
|
nnred |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. RR ) |
| 189 |
117
|
nnred |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. RR ) |
| 190 |
100
|
nngt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < w ) |
| 191 |
117
|
nngt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( P ^ ( P pCnt w ) ) ) |
| 192 |
188 189 190 191
|
divgt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( w / ( P ^ ( P pCnt w ) ) ) ) |
| 193 |
|
elnnz |
|- ( ( w / ( P ^ ( P pCnt w ) ) ) e. NN <-> ( ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ /\ 0 < ( w / ( P ^ ( P pCnt w ) ) ) ) ) |
| 194 |
187 192 193
|
sylanbrc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( w / ( P ^ ( P pCnt w ) ) ) e. NN ) |
| 195 |
|
pcndvds2 |
|- ( ( P e. Prime /\ w e. NN ) -> -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) |
| 196 |
23 100 195
|
syl2anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) |
| 197 |
194 196
|
jca |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( w / ( P ^ ( P pCnt w ) ) ) e. NN /\ -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) ) |
| 198 |
23 96 142 145 154 171 180 197
|
pcaddlem |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |
| 199 |
198
|
expr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 200 |
199
|
rexlimdvva |
|- ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 201 |
22 200
|
biimtrrid |
|- ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 202 |
201
|
rexlimdvva |
|- ( ( ph /\ B =/= 0 ) -> ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 203 |
21 202
|
biimtrrid |
|- ( ( ph /\ B =/= 0 ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 204 |
20 203
|
pm2.61dane |
|- ( ph -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 205 |
6 8 204
|
mp2and |
|- ( ph -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |