| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcadd2.1 |
|- ( ph -> P e. Prime ) |
| 2 |
|
pcadd2.2 |
|- ( ph -> A e. QQ ) |
| 3 |
|
pcadd2.3 |
|- ( ph -> B e. QQ ) |
| 4 |
|
pcadd2.4 |
|- ( ph -> ( P pCnt A ) < ( P pCnt B ) ) |
| 5 |
|
pcxcl |
|- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt A ) e. RR* ) |
| 6 |
1 2 5
|
syl2anc |
|- ( ph -> ( P pCnt A ) e. RR* ) |
| 7 |
|
qaddcl |
|- ( ( A e. QQ /\ B e. QQ ) -> ( A + B ) e. QQ ) |
| 8 |
2 3 7
|
syl2anc |
|- ( ph -> ( A + B ) e. QQ ) |
| 9 |
|
pcxcl |
|- ( ( P e. Prime /\ ( A + B ) e. QQ ) -> ( P pCnt ( A + B ) ) e. RR* ) |
| 10 |
1 8 9
|
syl2anc |
|- ( ph -> ( P pCnt ( A + B ) ) e. RR* ) |
| 11 |
|
pcxcl |
|- ( ( P e. Prime /\ B e. QQ ) -> ( P pCnt B ) e. RR* ) |
| 12 |
1 3 11
|
syl2anc |
|- ( ph -> ( P pCnt B ) e. RR* ) |
| 13 |
6 12 4
|
xrltled |
|- ( ph -> ( P pCnt A ) <_ ( P pCnt B ) ) |
| 14 |
1 2 3 13
|
pcadd |
|- ( ph -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |
| 15 |
|
qnegcl |
|- ( B e. QQ -> -u B e. QQ ) |
| 16 |
3 15
|
syl |
|- ( ph -> -u B e. QQ ) |
| 17 |
|
xrltnle |
|- ( ( ( P pCnt A ) e. RR* /\ ( P pCnt B ) e. RR* ) -> ( ( P pCnt A ) < ( P pCnt B ) <-> -. ( P pCnt B ) <_ ( P pCnt A ) ) ) |
| 18 |
6 12 17
|
syl2anc |
|- ( ph -> ( ( P pCnt A ) < ( P pCnt B ) <-> -. ( P pCnt B ) <_ ( P pCnt A ) ) ) |
| 19 |
4 18
|
mpbid |
|- ( ph -> -. ( P pCnt B ) <_ ( P pCnt A ) ) |
| 20 |
1
|
adantr |
|- ( ( ph /\ ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) -> P e. Prime ) |
| 21 |
16
|
adantr |
|- ( ( ph /\ ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) -> -u B e. QQ ) |
| 22 |
8
|
adantr |
|- ( ( ph /\ ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) -> ( A + B ) e. QQ ) |
| 23 |
|
pcneg |
|- ( ( P e. Prime /\ B e. QQ ) -> ( P pCnt -u B ) = ( P pCnt B ) ) |
| 24 |
1 3 23
|
syl2anc |
|- ( ph -> ( P pCnt -u B ) = ( P pCnt B ) ) |
| 25 |
24
|
breq1d |
|- ( ph -> ( ( P pCnt -u B ) <_ ( P pCnt ( A + B ) ) <-> ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) ) |
| 26 |
25
|
biimpar |
|- ( ( ph /\ ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) -> ( P pCnt -u B ) <_ ( P pCnt ( A + B ) ) ) |
| 27 |
20 21 22 26
|
pcadd |
|- ( ( ph /\ ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) -> ( P pCnt -u B ) <_ ( P pCnt ( -u B + ( A + B ) ) ) ) |
| 28 |
27
|
ex |
|- ( ph -> ( ( P pCnt B ) <_ ( P pCnt ( A + B ) ) -> ( P pCnt -u B ) <_ ( P pCnt ( -u B + ( A + B ) ) ) ) ) |
| 29 |
|
qcn |
|- ( B e. QQ -> B e. CC ) |
| 30 |
3 29
|
syl |
|- ( ph -> B e. CC ) |
| 31 |
30
|
negcld |
|- ( ph -> -u B e. CC ) |
| 32 |
|
qcn |
|- ( A e. QQ -> A e. CC ) |
| 33 |
2 32
|
syl |
|- ( ph -> A e. CC ) |
| 34 |
31 33 30
|
add12d |
|- ( ph -> ( -u B + ( A + B ) ) = ( A + ( -u B + B ) ) ) |
| 35 |
31 30
|
addcomd |
|- ( ph -> ( -u B + B ) = ( B + -u B ) ) |
| 36 |
30
|
negidd |
|- ( ph -> ( B + -u B ) = 0 ) |
| 37 |
35 36
|
eqtrd |
|- ( ph -> ( -u B + B ) = 0 ) |
| 38 |
37
|
oveq2d |
|- ( ph -> ( A + ( -u B + B ) ) = ( A + 0 ) ) |
| 39 |
33
|
addridd |
|- ( ph -> ( A + 0 ) = A ) |
| 40 |
34 38 39
|
3eqtrd |
|- ( ph -> ( -u B + ( A + B ) ) = A ) |
| 41 |
40
|
oveq2d |
|- ( ph -> ( P pCnt ( -u B + ( A + B ) ) ) = ( P pCnt A ) ) |
| 42 |
24 41
|
breq12d |
|- ( ph -> ( ( P pCnt -u B ) <_ ( P pCnt ( -u B + ( A + B ) ) ) <-> ( P pCnt B ) <_ ( P pCnt A ) ) ) |
| 43 |
28 42
|
sylibd |
|- ( ph -> ( ( P pCnt B ) <_ ( P pCnt ( A + B ) ) -> ( P pCnt B ) <_ ( P pCnt A ) ) ) |
| 44 |
19 43
|
mtod |
|- ( ph -> -. ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) |
| 45 |
|
xrltnle |
|- ( ( ( P pCnt ( A + B ) ) e. RR* /\ ( P pCnt B ) e. RR* ) -> ( ( P pCnt ( A + B ) ) < ( P pCnt B ) <-> -. ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) ) |
| 46 |
10 12 45
|
syl2anc |
|- ( ph -> ( ( P pCnt ( A + B ) ) < ( P pCnt B ) <-> -. ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) ) |
| 47 |
44 46
|
mpbird |
|- ( ph -> ( P pCnt ( A + B ) ) < ( P pCnt B ) ) |
| 48 |
10 12 47
|
xrltled |
|- ( ph -> ( P pCnt ( A + B ) ) <_ ( P pCnt B ) ) |
| 49 |
48 24
|
breqtrrd |
|- ( ph -> ( P pCnt ( A + B ) ) <_ ( P pCnt -u B ) ) |
| 50 |
1 8 16 49
|
pcadd |
|- ( ph -> ( P pCnt ( A + B ) ) <_ ( P pCnt ( ( A + B ) + -u B ) ) ) |
| 51 |
33 30 31
|
addassd |
|- ( ph -> ( ( A + B ) + -u B ) = ( A + ( B + -u B ) ) ) |
| 52 |
36
|
oveq2d |
|- ( ph -> ( A + ( B + -u B ) ) = ( A + 0 ) ) |
| 53 |
51 52 39
|
3eqtrd |
|- ( ph -> ( ( A + B ) + -u B ) = A ) |
| 54 |
53
|
oveq2d |
|- ( ph -> ( P pCnt ( ( A + B ) + -u B ) ) = ( P pCnt A ) ) |
| 55 |
50 54
|
breqtrd |
|- ( ph -> ( P pCnt ( A + B ) ) <_ ( P pCnt A ) ) |
| 56 |
6 10 14 55
|
xrletrid |
|- ( ph -> ( P pCnt A ) = ( P pCnt ( A + B ) ) ) |