Description: The inequality of pcadd becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pcadd2.1 | |
|
pcadd2.2 | |
||
pcadd2.3 | |
||
pcadd2.4 | |
||
Assertion | pcadd2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcadd2.1 | |
|
2 | pcadd2.2 | |
|
3 | pcadd2.3 | |
|
4 | pcadd2.4 | |
|
5 | pcxcl | |
|
6 | 1 2 5 | syl2anc | |
7 | qaddcl | |
|
8 | 2 3 7 | syl2anc | |
9 | pcxcl | |
|
10 | 1 8 9 | syl2anc | |
11 | pcxcl | |
|
12 | 1 3 11 | syl2anc | |
13 | 6 12 4 | xrltled | |
14 | 1 2 3 13 | pcadd | |
15 | qnegcl | |
|
16 | 3 15 | syl | |
17 | xrltnle | |
|
18 | 6 12 17 | syl2anc | |
19 | 4 18 | mpbid | |
20 | 1 | adantr | |
21 | 16 | adantr | |
22 | 8 | adantr | |
23 | pcneg | |
|
24 | 1 3 23 | syl2anc | |
25 | 24 | breq1d | |
26 | 25 | biimpar | |
27 | 20 21 22 26 | pcadd | |
28 | 27 | ex | |
29 | qcn | |
|
30 | 3 29 | syl | |
31 | 30 | negcld | |
32 | qcn | |
|
33 | 2 32 | syl | |
34 | 31 33 30 | add12d | |
35 | 31 30 | addcomd | |
36 | 30 | negidd | |
37 | 35 36 | eqtrd | |
38 | 37 | oveq2d | |
39 | 33 | addridd | |
40 | 34 38 39 | 3eqtrd | |
41 | 40 | oveq2d | |
42 | 24 41 | breq12d | |
43 | 28 42 | sylibd | |
44 | 19 43 | mtod | |
45 | xrltnle | |
|
46 | 10 12 45 | syl2anc | |
47 | 44 46 | mpbird | |
48 | 10 12 47 | xrltled | |
49 | 48 24 | breqtrrd | |
50 | 1 8 16 49 | pcadd | |
51 | 33 30 31 | addassd | |
52 | 36 | oveq2d | |
53 | 51 52 39 | 3eqtrd | |
54 | 53 | oveq2d | |
55 | 50 54 | breqtrd | |
56 | 6 10 14 55 | xrletrid | |