| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcmpt.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) |
| 2 |
|
pcmpt.2 |
|- ( ph -> A. n e. Prime A e. NN0 ) |
| 3 |
|
pm2.27 |
|- ( n e. Prime -> ( ( n e. Prime -> A e. NN0 ) -> A e. NN0 ) ) |
| 4 |
|
iftrue |
|- ( n e. Prime -> if ( n e. Prime , ( n ^ A ) , 1 ) = ( n ^ A ) ) |
| 5 |
4
|
adantr |
|- ( ( n e. Prime /\ A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) = ( n ^ A ) ) |
| 6 |
|
prmnn |
|- ( n e. Prime -> n e. NN ) |
| 7 |
|
nnexpcl |
|- ( ( n e. NN /\ A e. NN0 ) -> ( n ^ A ) e. NN ) |
| 8 |
6 7
|
sylan |
|- ( ( n e. Prime /\ A e. NN0 ) -> ( n ^ A ) e. NN ) |
| 9 |
5 8
|
eqeltrd |
|- ( ( n e. Prime /\ A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) |
| 10 |
9
|
ex |
|- ( n e. Prime -> ( A e. NN0 -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) |
| 11 |
3 10
|
syld |
|- ( n e. Prime -> ( ( n e. Prime -> A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) |
| 12 |
|
iffalse |
|- ( -. n e. Prime -> if ( n e. Prime , ( n ^ A ) , 1 ) = 1 ) |
| 13 |
|
1nn |
|- 1 e. NN |
| 14 |
12 13
|
eqeltrdi |
|- ( -. n e. Prime -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) |
| 15 |
14
|
a1d |
|- ( -. n e. Prime -> ( ( n e. Prime -> A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) |
| 16 |
11 15
|
pm2.61i |
|- ( ( n e. Prime -> A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) |
| 17 |
16
|
a1d |
|- ( ( n e. Prime -> A e. NN0 ) -> ( n e. NN -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) |
| 18 |
17
|
ralimi2 |
|- ( A. n e. Prime A e. NN0 -> A. n e. NN if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) |
| 19 |
2 18
|
syl |
|- ( ph -> A. n e. NN if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) |
| 20 |
1
|
fmpt |
|- ( A. n e. NN if ( n e. Prime , ( n ^ A ) , 1 ) e. NN <-> F : NN --> NN ) |
| 21 |
19 20
|
sylib |
|- ( ph -> F : NN --> NN ) |
| 22 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 23 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 24 |
21
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. NN ) |
| 25 |
|
nnmulcl |
|- ( ( k e. NN /\ p e. NN ) -> ( k x. p ) e. NN ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ ( k e. NN /\ p e. NN ) ) -> ( k x. p ) e. NN ) |
| 27 |
22 23 24 26
|
seqf |
|- ( ph -> seq 1 ( x. , F ) : NN --> NN ) |
| 28 |
21 27
|
jca |
|- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |