| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcmpt.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) |
| 2 |
|
pcmpt.2 |
|- ( ph -> A. n e. Prime A e. NN0 ) |
| 3 |
|
pcmpt.3 |
|- ( ph -> N e. NN ) |
| 4 |
|
pcmpt.4 |
|- ( ph -> P e. Prime ) |
| 5 |
|
pcmpt.5 |
|- ( n = P -> A = B ) |
| 6 |
|
fveq2 |
|- ( p = 1 -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` 1 ) ) |
| 7 |
6
|
oveq2d |
|- ( p = 1 -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) ) |
| 8 |
|
breq2 |
|- ( p = 1 -> ( P <_ p <-> P <_ 1 ) ) |
| 9 |
8
|
ifbid |
|- ( p = 1 -> if ( P <_ p , B , 0 ) = if ( P <_ 1 , B , 0 ) ) |
| 10 |
7 9
|
eqeq12d |
|- ( p = 1 -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) ) |
| 11 |
10
|
imbi2d |
|- ( p = 1 -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) ) ) |
| 12 |
|
fveq2 |
|- ( p = k -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` k ) ) |
| 13 |
12
|
oveq2d |
|- ( p = k -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` k ) ) ) |
| 14 |
|
breq2 |
|- ( p = k -> ( P <_ p <-> P <_ k ) ) |
| 15 |
14
|
ifbid |
|- ( p = k -> if ( P <_ p , B , 0 ) = if ( P <_ k , B , 0 ) ) |
| 16 |
13 15
|
eqeq12d |
|- ( p = k -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) ) |
| 17 |
16
|
imbi2d |
|- ( p = k -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) ) ) |
| 18 |
|
fveq2 |
|- ( p = ( k + 1 ) -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) |
| 19 |
18
|
oveq2d |
|- ( p = ( k + 1 ) -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) ) |
| 20 |
|
breq2 |
|- ( p = ( k + 1 ) -> ( P <_ p <-> P <_ ( k + 1 ) ) ) |
| 21 |
20
|
ifbid |
|- ( p = ( k + 1 ) -> if ( P <_ p , B , 0 ) = if ( P <_ ( k + 1 ) , B , 0 ) ) |
| 22 |
19 21
|
eqeq12d |
|- ( p = ( k + 1 ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
| 23 |
22
|
imbi2d |
|- ( p = ( k + 1 ) -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
| 24 |
|
fveq2 |
|- ( p = N -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` N ) ) |
| 25 |
24
|
oveq2d |
|- ( p = N -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` N ) ) ) |
| 26 |
|
breq2 |
|- ( p = N -> ( P <_ p <-> P <_ N ) ) |
| 27 |
26
|
ifbid |
|- ( p = N -> if ( P <_ p , B , 0 ) = if ( P <_ N , B , 0 ) ) |
| 28 |
25 27
|
eqeq12d |
|- ( p = N -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) ) |
| 29 |
28
|
imbi2d |
|- ( p = N -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) ) ) |
| 30 |
|
1z |
|- 1 e. ZZ |
| 31 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) ) |
| 32 |
30 31
|
ax-mp |
|- ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) |
| 33 |
|
1nn |
|- 1 e. NN |
| 34 |
|
1nprm |
|- -. 1 e. Prime |
| 35 |
|
eleq1 |
|- ( n = 1 -> ( n e. Prime <-> 1 e. Prime ) ) |
| 36 |
34 35
|
mtbiri |
|- ( n = 1 -> -. n e. Prime ) |
| 37 |
36
|
iffalsed |
|- ( n = 1 -> if ( n e. Prime , ( n ^ A ) , 1 ) = 1 ) |
| 38 |
|
1ex |
|- 1 e. _V |
| 39 |
37 1 38
|
fvmpt |
|- ( 1 e. NN -> ( F ` 1 ) = 1 ) |
| 40 |
33 39
|
ax-mp |
|- ( F ` 1 ) = 1 |
| 41 |
32 40
|
eqtri |
|- ( seq 1 ( x. , F ) ` 1 ) = 1 |
| 42 |
41
|
oveq2i |
|- ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = ( P pCnt 1 ) |
| 43 |
|
pc1 |
|- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
| 44 |
42 43
|
eqtrid |
|- ( P e. Prime -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = 0 ) |
| 45 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
| 46 |
|
1re |
|- 1 e. RR |
| 47 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 48 |
|
eluzelre |
|- ( P e. ( ZZ>= ` 2 ) -> P e. RR ) |
| 49 |
47 48
|
syl |
|- ( P e. Prime -> P e. RR ) |
| 50 |
|
ltnle |
|- ( ( 1 e. RR /\ P e. RR ) -> ( 1 < P <-> -. P <_ 1 ) ) |
| 51 |
46 49 50
|
sylancr |
|- ( P e. Prime -> ( 1 < P <-> -. P <_ 1 ) ) |
| 52 |
45 51
|
mpbid |
|- ( P e. Prime -> -. P <_ 1 ) |
| 53 |
52
|
iffalsed |
|- ( P e. Prime -> if ( P <_ 1 , B , 0 ) = 0 ) |
| 54 |
44 53
|
eqtr4d |
|- ( P e. Prime -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) |
| 55 |
4 54
|
syl |
|- ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) |
| 56 |
4
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P e. Prime ) |
| 57 |
1 2
|
pcmptcl |
|- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |
| 58 |
57
|
simpld |
|- ( ph -> F : NN --> NN ) |
| 59 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
| 60 |
|
ffvelcdm |
|- ( ( F : NN --> NN /\ ( k + 1 ) e. NN ) -> ( F ` ( k + 1 ) ) e. NN ) |
| 61 |
58 59 60
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. NN ) |
| 62 |
61
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( F ` ( k + 1 ) ) e. NN ) |
| 63 |
56 62
|
pccld |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) e. NN0 ) |
| 64 |
63
|
nn0cnd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) e. CC ) |
| 65 |
64
|
addlidd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) = ( P pCnt ( F ` ( k + 1 ) ) ) ) |
| 66 |
59
|
ad2antrl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( k + 1 ) e. NN ) |
| 67 |
|
ovex |
|- ( n ^ A ) e. _V |
| 68 |
67 38
|
ifex |
|- if ( n e. Prime , ( n ^ A ) , 1 ) e. _V |
| 69 |
68
|
csbex |
|- [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) e. _V |
| 70 |
1
|
fvmpts |
|- ( ( ( k + 1 ) e. NN /\ [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) e. _V ) -> ( F ` ( k + 1 ) ) = [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) ) |
| 71 |
|
ovex |
|- ( k + 1 ) e. _V |
| 72 |
|
nfv |
|- F/ n ( k + 1 ) e. Prime |
| 73 |
|
nfcv |
|- F/_ n ( k + 1 ) |
| 74 |
|
nfcv |
|- F/_ n ^ |
| 75 |
|
nfcsb1v |
|- F/_ n [_ ( k + 1 ) / n ]_ A |
| 76 |
73 74 75
|
nfov |
|- F/_ n ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) |
| 77 |
|
nfcv |
|- F/_ n 1 |
| 78 |
72 76 77
|
nfif |
|- F/_ n if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) |
| 79 |
|
eleq1 |
|- ( n = ( k + 1 ) -> ( n e. Prime <-> ( k + 1 ) e. Prime ) ) |
| 80 |
|
id |
|- ( n = ( k + 1 ) -> n = ( k + 1 ) ) |
| 81 |
|
csbeq1a |
|- ( n = ( k + 1 ) -> A = [_ ( k + 1 ) / n ]_ A ) |
| 82 |
80 81
|
oveq12d |
|- ( n = ( k + 1 ) -> ( n ^ A ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
| 83 |
79 82
|
ifbieq1d |
|- ( n = ( k + 1 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
| 84 |
71 78 83
|
csbief |
|- [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) |
| 85 |
70 84
|
eqtrdi |
|- ( ( ( k + 1 ) e. NN /\ [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) e. _V ) -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
| 86 |
66 69 85
|
sylancl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
| 87 |
|
simprr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( k + 1 ) = P ) |
| 88 |
87 56
|
eqeltrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( k + 1 ) e. Prime ) |
| 89 |
88
|
iftrued |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
| 90 |
87
|
csbeq1d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> [_ ( k + 1 ) / n ]_ A = [_ P / n ]_ A ) |
| 91 |
|
nfcvd |
|- ( P e. Prime -> F/_ n B ) |
| 92 |
91 5
|
csbiegf |
|- ( P e. Prime -> [_ P / n ]_ A = B ) |
| 93 |
56 92
|
syl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> [_ P / n ]_ A = B ) |
| 94 |
90 93
|
eqtrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> [_ ( k + 1 ) / n ]_ A = B ) |
| 95 |
87 94
|
oveq12d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) = ( P ^ B ) ) |
| 96 |
86 89 95
|
3eqtrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( F ` ( k + 1 ) ) = ( P ^ B ) ) |
| 97 |
96
|
oveq2d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = ( P pCnt ( P ^ B ) ) ) |
| 98 |
5
|
eleq1d |
|- ( n = P -> ( A e. NN0 <-> B e. NN0 ) ) |
| 99 |
98
|
rspcv |
|- ( P e. Prime -> ( A. n e. Prime A e. NN0 -> B e. NN0 ) ) |
| 100 |
4 2 99
|
sylc |
|- ( ph -> B e. NN0 ) |
| 101 |
100
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> B e. NN0 ) |
| 102 |
|
pcidlem |
|- ( ( P e. Prime /\ B e. NN0 ) -> ( P pCnt ( P ^ B ) ) = B ) |
| 103 |
56 101 102
|
syl2anc |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( P ^ B ) ) = B ) |
| 104 |
65 97 103
|
3eqtrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) |
| 105 |
|
oveq1 |
|- ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
| 106 |
105
|
eqeq1d |
|- ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 -> ( ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B <-> ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) ) |
| 107 |
104 106
|
syl5ibrcom |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) ) |
| 108 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
| 109 |
108
|
ad2antrl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> k e. RR ) |
| 110 |
|
ltp1 |
|- ( k e. RR -> k < ( k + 1 ) ) |
| 111 |
|
peano2re |
|- ( k e. RR -> ( k + 1 ) e. RR ) |
| 112 |
|
ltnle |
|- ( ( k e. RR /\ ( k + 1 ) e. RR ) -> ( k < ( k + 1 ) <-> -. ( k + 1 ) <_ k ) ) |
| 113 |
111 112
|
mpdan |
|- ( k e. RR -> ( k < ( k + 1 ) <-> -. ( k + 1 ) <_ k ) ) |
| 114 |
110 113
|
mpbid |
|- ( k e. RR -> -. ( k + 1 ) <_ k ) |
| 115 |
109 114
|
syl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> -. ( k + 1 ) <_ k ) |
| 116 |
87
|
breq1d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( k + 1 ) <_ k <-> P <_ k ) ) |
| 117 |
115 116
|
mtbid |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> -. P <_ k ) |
| 118 |
117
|
iffalsed |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> if ( P <_ k , B , 0 ) = 0 ) |
| 119 |
118
|
eqeq2d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 ) ) |
| 120 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
| 121 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 122 |
120 121
|
eleqtrdi |
|- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 123 |
|
seqp1 |
|- ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) |
| 124 |
122 123
|
syl |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) |
| 125 |
124
|
oveq2d |
|- ( ( ph /\ k e. NN ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( P pCnt ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) ) |
| 126 |
4
|
adantr |
|- ( ( ph /\ k e. NN ) -> P e. Prime ) |
| 127 |
57
|
simprd |
|- ( ph -> seq 1 ( x. , F ) : NN --> NN ) |
| 128 |
127
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` k ) e. NN ) |
| 129 |
|
nnz |
|- ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( seq 1 ( x. , F ) ` k ) e. ZZ ) |
| 130 |
|
nnne0 |
|- ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( seq 1 ( x. , F ) ` k ) =/= 0 ) |
| 131 |
129 130
|
jca |
|- ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( ( seq 1 ( x. , F ) ` k ) e. ZZ /\ ( seq 1 ( x. , F ) ` k ) =/= 0 ) ) |
| 132 |
128 131
|
syl |
|- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( x. , F ) ` k ) e. ZZ /\ ( seq 1 ( x. , F ) ` k ) =/= 0 ) ) |
| 133 |
|
nnz |
|- ( ( F ` ( k + 1 ) ) e. NN -> ( F ` ( k + 1 ) ) e. ZZ ) |
| 134 |
|
nnne0 |
|- ( ( F ` ( k + 1 ) ) e. NN -> ( F ` ( k + 1 ) ) =/= 0 ) |
| 135 |
133 134
|
jca |
|- ( ( F ` ( k + 1 ) ) e. NN -> ( ( F ` ( k + 1 ) ) e. ZZ /\ ( F ` ( k + 1 ) ) =/= 0 ) ) |
| 136 |
61 135
|
syl |
|- ( ( ph /\ k e. NN ) -> ( ( F ` ( k + 1 ) ) e. ZZ /\ ( F ` ( k + 1 ) ) =/= 0 ) ) |
| 137 |
|
pcmul |
|- ( ( P e. Prime /\ ( ( seq 1 ( x. , F ) ` k ) e. ZZ /\ ( seq 1 ( x. , F ) ` k ) =/= 0 ) /\ ( ( F ` ( k + 1 ) ) e. ZZ /\ ( F ` ( k + 1 ) ) =/= 0 ) ) -> ( P pCnt ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
| 138 |
126 132 136 137
|
syl3anc |
|- ( ( ph /\ k e. NN ) -> ( P pCnt ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
| 139 |
125 138
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
| 140 |
139
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
| 141 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 142 |
4 141
|
syl |
|- ( ph -> P e. NN ) |
| 143 |
142
|
nnred |
|- ( ph -> P e. RR ) |
| 144 |
143
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P e. RR ) |
| 145 |
144
|
leidd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P <_ P ) |
| 146 |
145 87
|
breqtrrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P <_ ( k + 1 ) ) |
| 147 |
146
|
iftrued |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> if ( P <_ ( k + 1 ) , B , 0 ) = B ) |
| 148 |
140 147
|
eqeq12d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) <-> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) ) |
| 149 |
107 119 148
|
3imtr4d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
| 150 |
149
|
expr |
|- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) = P -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
| 151 |
139
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
| 152 |
|
simplrr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( k + 1 ) =/= P ) |
| 153 |
152
|
necomd |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> P =/= ( k + 1 ) ) |
| 154 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> P e. Prime ) |
| 155 |
|
simpr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( k + 1 ) e. Prime ) |
| 156 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> A. n e. Prime A e. NN0 ) |
| 157 |
75
|
nfel1 |
|- F/ n [_ ( k + 1 ) / n ]_ A e. NN0 |
| 158 |
81
|
eleq1d |
|- ( n = ( k + 1 ) -> ( A e. NN0 <-> [_ ( k + 1 ) / n ]_ A e. NN0 ) ) |
| 159 |
157 158
|
rspc |
|- ( ( k + 1 ) e. Prime -> ( A. n e. Prime A e. NN0 -> [_ ( k + 1 ) / n ]_ A e. NN0 ) ) |
| 160 |
155 156 159
|
sylc |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> [_ ( k + 1 ) / n ]_ A e. NN0 ) |
| 161 |
|
prmdvdsexpr |
|- ( ( P e. Prime /\ ( k + 1 ) e. Prime /\ [_ ( k + 1 ) / n ]_ A e. NN0 ) -> ( P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) -> P = ( k + 1 ) ) ) |
| 162 |
154 155 160 161
|
syl3anc |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) -> P = ( k + 1 ) ) ) |
| 163 |
162
|
necon3ad |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P =/= ( k + 1 ) -> -. P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) ) |
| 164 |
153 163
|
mpd |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> -. P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
| 165 |
59
|
ad2antrl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( k + 1 ) e. NN ) |
| 166 |
165 69 85
|
sylancl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
| 167 |
|
iftrue |
|- ( ( k + 1 ) e. Prime -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
| 168 |
166 167
|
sylan9eq |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
| 169 |
168
|
breq2d |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P || ( F ` ( k + 1 ) ) <-> P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) ) |
| 170 |
164 169
|
mtbird |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> -. P || ( F ` ( k + 1 ) ) ) |
| 171 |
58
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> F : NN --> NN ) |
| 172 |
171 165 60
|
syl2anc |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( F ` ( k + 1 ) ) e. NN ) |
| 173 |
172
|
adantr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) e. NN ) |
| 174 |
|
pceq0 |
|- ( ( P e. Prime /\ ( F ` ( k + 1 ) ) e. NN ) -> ( ( P pCnt ( F ` ( k + 1 ) ) ) = 0 <-> -. P || ( F ` ( k + 1 ) ) ) ) |
| 175 |
154 173 174
|
syl2anc |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( ( P pCnt ( F ` ( k + 1 ) ) ) = 0 <-> -. P || ( F ` ( k + 1 ) ) ) ) |
| 176 |
170 175
|
mpbird |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = 0 ) |
| 177 |
|
iffalse |
|- ( -. ( k + 1 ) e. Prime -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) = 1 ) |
| 178 |
166 177
|
sylan9eq |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) = 1 ) |
| 179 |
178
|
oveq2d |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = ( P pCnt 1 ) ) |
| 180 |
4 43
|
syl |
|- ( ph -> ( P pCnt 1 ) = 0 ) |
| 181 |
180
|
ad2antrr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( P pCnt 1 ) = 0 ) |
| 182 |
179 181
|
eqtrd |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = 0 ) |
| 183 |
176 182
|
pm2.61dan |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = 0 ) |
| 184 |
183
|
oveq2d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + 0 ) ) |
| 185 |
4
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> P e. Prime ) |
| 186 |
128
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( seq 1 ( x. , F ) ` k ) e. NN ) |
| 187 |
185 186
|
pccld |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) e. NN0 ) |
| 188 |
187
|
nn0cnd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) e. CC ) |
| 189 |
188
|
addridd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + 0 ) = ( P pCnt ( seq 1 ( x. , F ) ` k ) ) ) |
| 190 |
151 184 189
|
3eqtrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( P pCnt ( seq 1 ( x. , F ) ` k ) ) ) |
| 191 |
142
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> P e. NN ) |
| 192 |
191
|
nnred |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> P e. RR ) |
| 193 |
165
|
nnred |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( k + 1 ) e. RR ) |
| 194 |
192 193
|
ltlend |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P < ( k + 1 ) <-> ( P <_ ( k + 1 ) /\ ( k + 1 ) =/= P ) ) ) |
| 195 |
|
simprl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> k e. NN ) |
| 196 |
|
nnleltp1 |
|- ( ( P e. NN /\ k e. NN ) -> ( P <_ k <-> P < ( k + 1 ) ) ) |
| 197 |
191 195 196
|
syl2anc |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P <_ k <-> P < ( k + 1 ) ) ) |
| 198 |
|
simprr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( k + 1 ) =/= P ) |
| 199 |
198
|
biantrud |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P <_ ( k + 1 ) <-> ( P <_ ( k + 1 ) /\ ( k + 1 ) =/= P ) ) ) |
| 200 |
194 197 199
|
3bitr4rd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P <_ ( k + 1 ) <-> P <_ k ) ) |
| 201 |
200
|
ifbid |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> if ( P <_ ( k + 1 ) , B , 0 ) = if ( P <_ k , B , 0 ) ) |
| 202 |
190 201
|
eqeq12d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) ) |
| 203 |
202
|
biimprd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
| 204 |
203
|
expr |
|- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) =/= P -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
| 205 |
150 204
|
pm2.61dne |
|- ( ( ph /\ k e. NN ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
| 206 |
205
|
expcom |
|- ( k e. NN -> ( ph -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
| 207 |
206
|
a2d |
|- ( k e. NN -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) -> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
| 208 |
11 17 23 29 55 207
|
nnind |
|- ( N e. NN -> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) ) |
| 209 |
3 208
|
mpcom |
|- ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) |