| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcadd.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 2 |
|
pcadd.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℚ ) |
| 3 |
|
pcadd.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℚ ) |
| 4 |
|
pcadd.4 |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 5 |
|
elq |
⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
| 6 |
2 5
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
| 7 |
|
elq |
⊢ ( 𝐵 ∈ ℚ ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) |
| 8 |
3 7
|
sylib |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) |
| 9 |
|
pcxcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
| 10 |
1 2 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
| 11 |
10
|
xrleidd |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 + 𝐵 ) = ( 𝐴 + 0 ) ) |
| 14 |
|
qcn |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) |
| 15 |
2 14
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 16 |
15
|
addridd |
⊢ ( 𝜑 → ( 𝐴 + 0 ) = 𝐴 ) |
| 17 |
13 16
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝐴 + 𝐵 ) = 𝐴 ) |
| 18 |
17
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 19 |
12 18
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
| 20 |
19
|
a1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 21 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∈ ℤ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ) |
| 22 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ↔ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ) |
| 23 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ∈ ℙ ) |
| 24 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 25 |
23 24
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ∈ ℕ ) |
| 26 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑥 ∈ ℤ ) |
| 27 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 = ( 𝑥 / 𝑦 ) ) |
| 28 |
|
pc0 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) |
| 29 |
23 28
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 0 ) = +∞ ) |
| 30 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 ∈ ℚ ) |
| 31 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 ≠ 0 ) |
| 32 |
|
pcqcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℤ ) |
| 33 |
23 30 31 32
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℤ ) |
| 34 |
33
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℝ ) |
| 35 |
|
ltpnf |
⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ( 𝑃 pCnt 𝐵 ) < +∞ ) |
| 36 |
|
rexr |
⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) |
| 37 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 38 |
|
xrltnle |
⊢ ( ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑃 pCnt 𝐵 ) < +∞ ↔ ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
| 39 |
36 37 38
|
sylancl |
⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ( ( 𝑃 pCnt 𝐵 ) < +∞ ↔ ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
| 40 |
35 39
|
mpbid |
⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 41 |
34 40
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 42 |
29 41
|
eqnbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 43 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 44 |
|
oveq2 |
⊢ ( 𝐴 = 0 → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt 0 ) ) |
| 45 |
44
|
breq1d |
⊢ ( 𝐴 = 0 → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ↔ ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
| 46 |
43 45
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 = 0 → ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
| 47 |
46
|
necon3bd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ¬ ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) → 𝐴 ≠ 0 ) ) |
| 48 |
42 47
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 ≠ 0 ) |
| 49 |
27 48
|
eqnetrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑥 / 𝑦 ) ≠ 0 ) |
| 50 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℕ ) |
| 51 |
50
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℂ ) |
| 52 |
50
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ≠ 0 ) |
| 53 |
51 52
|
div0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 0 / 𝑦 ) = 0 ) |
| 54 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = ( 0 / 𝑦 ) ) |
| 55 |
54
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 / 𝑦 ) = 0 ↔ ( 0 / 𝑦 ) = 0 ) ) |
| 56 |
53 55
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = 0 ) ) |
| 57 |
56
|
necon3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / 𝑦 ) ≠ 0 → 𝑥 ≠ 0 ) ) |
| 58 |
49 57
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑥 ≠ 0 ) |
| 59 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) |
| 60 |
23 26 58 59
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) |
| 61 |
25 60
|
nnexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℕ ) |
| 62 |
61
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℂ ) |
| 63 |
62 51
|
mulcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) · 𝑦 ) = ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) |
| 64 |
63
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) · 𝑦 ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
| 65 |
26
|
zcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑥 ∈ ℂ ) |
| 66 |
23 50
|
pccld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℕ0 ) |
| 67 |
25 66
|
nnexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℕ ) |
| 68 |
67
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℂ ) |
| 69 |
61
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ≠ 0 ) |
| 70 |
67
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ≠ 0 ) |
| 71 |
65 62 51 68 69 70 52
|
divdivdivd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) · 𝑦 ) ) ) |
| 72 |
27
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
| 73 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
| 74 |
23 26 58 50 73
|
syl121anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
| 75 |
72 74
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
| 76 |
75
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) = ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) ) |
| 77 |
25
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ∈ ℂ ) |
| 78 |
25
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ≠ 0 ) |
| 79 |
66
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℤ ) |
| 80 |
60
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℤ ) |
| 81 |
77 78 79 80
|
expsubd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
| 82 |
76 81
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
| 83 |
82
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( 𝐴 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) |
| 84 |
27
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( ( 𝑥 / 𝑦 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) |
| 85 |
65 51 62 68 52 70 69
|
divdivdivd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / 𝑦 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
| 86 |
83 84 85
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
| 87 |
64 71 86
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 88 |
87
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) ) |
| 89 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 ∈ ℚ ) |
| 90 |
89 14
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 ∈ ℂ ) |
| 91 |
|
pcqcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) |
| 92 |
23 89 48 91
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) |
| 93 |
77 78 92
|
expclzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℂ ) |
| 94 |
77 78 92
|
expne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ≠ 0 ) |
| 95 |
90 93 94
|
divcan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) = 𝐴 ) |
| 96 |
88 95
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) ) |
| 97 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑧 ∈ ℤ ) |
| 98 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 = ( 𝑧 / 𝑤 ) ) |
| 99 |
98 31
|
eqnetrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑧 / 𝑤 ) ≠ 0 ) |
| 100 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℕ ) |
| 101 |
100
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℂ ) |
| 102 |
100
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ≠ 0 ) |
| 103 |
101 102
|
div0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 0 / 𝑤 ) = 0 ) |
| 104 |
|
oveq1 |
⊢ ( 𝑧 = 0 → ( 𝑧 / 𝑤 ) = ( 0 / 𝑤 ) ) |
| 105 |
104
|
eqeq1d |
⊢ ( 𝑧 = 0 → ( ( 𝑧 / 𝑤 ) = 0 ↔ ( 0 / 𝑤 ) = 0 ) ) |
| 106 |
103 105
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑧 = 0 → ( 𝑧 / 𝑤 ) = 0 ) ) |
| 107 |
106
|
necon3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / 𝑤 ) ≠ 0 → 𝑧 ≠ 0 ) ) |
| 108 |
99 107
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑧 ≠ 0 ) |
| 109 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℕ0 ) |
| 110 |
23 97 108 109
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℕ0 ) |
| 111 |
25 110
|
nnexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℕ ) |
| 112 |
111
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℂ ) |
| 113 |
112 101
|
mulcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) · 𝑤 ) = ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) |
| 114 |
113
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) · 𝑤 ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
| 115 |
97
|
zcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑧 ∈ ℂ ) |
| 116 |
23 100
|
pccld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑤 ) ∈ ℕ0 ) |
| 117 |
25 116
|
nnexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℕ ) |
| 118 |
117
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℂ ) |
| 119 |
111
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ≠ 0 ) |
| 120 |
117
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ≠ 0 ) |
| 121 |
115 112 101 118 119 120 102
|
divdivdivd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) · 𝑤 ) ) ) |
| 122 |
98
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) = ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) |
| 123 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ∧ 𝑤 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) |
| 124 |
23 97 108 100 123
|
syl121anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) |
| 125 |
122 124
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) |
| 126 |
125
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 127 |
116
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑤 ) ∈ ℤ ) |
| 128 |
110
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℤ ) |
| 129 |
77 78 127 128
|
expsubd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 130 |
126 129
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 131 |
130
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) = ( 𝐵 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) |
| 132 |
98
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐵 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( ( 𝑧 / 𝑤 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) |
| 133 |
115 101 112 118 102 120 119
|
divdivdivd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / 𝑤 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
| 134 |
131 132 133
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
| 135 |
114 121 134
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) ) |
| 136 |
135
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) ) ) |
| 137 |
|
qcn |
⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) |
| 138 |
30 137
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 ∈ ℂ ) |
| 139 |
77 78 33
|
expclzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ∈ ℂ ) |
| 140 |
77 78 33
|
expne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ≠ 0 ) |
| 141 |
138 139 140
|
divcan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) ) = 𝐵 ) |
| 142 |
136 141
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) ) |
| 143 |
|
eluz |
⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℤ ∧ ( 𝑃 pCnt 𝐵 ) ∈ ℤ ) → ( ( 𝑃 pCnt 𝐵 ) ∈ ( ℤ≥ ‘ ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
| 144 |
92 33 143
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 pCnt 𝐵 ) ∈ ( ℤ≥ ‘ ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
| 145 |
43 144
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ( ℤ≥ ‘ ( 𝑃 pCnt 𝐴 ) ) ) |
| 146 |
|
pczdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ) |
| 147 |
23 26 58 146
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ) |
| 148 |
61
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℤ ) |
| 149 |
|
dvdsval2 |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ≠ 0 ∧ 𝑥 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ↔ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ) ) |
| 150 |
148 69 26 149
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ↔ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ) ) |
| 151 |
147 150
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ) |
| 152 |
|
pczndvds2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) |
| 153 |
23 26 58 152
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) |
| 154 |
151 153
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ∧ ¬ 𝑃 ∥ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
| 155 |
|
pcdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ) |
| 156 |
23 50 155
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ) |
| 157 |
67
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℤ ) |
| 158 |
50
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℤ ) |
| 159 |
|
dvdsval2 |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ≠ 0 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ↔ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ) ) |
| 160 |
157 70 158 159
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ↔ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ) ) |
| 161 |
156 160
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ) |
| 162 |
50
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℝ ) |
| 163 |
67
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℝ ) |
| 164 |
50
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < 𝑦 ) |
| 165 |
67
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) |
| 166 |
162 163 164 165
|
divgt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
| 167 |
|
elnnz |
⊢ ( ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℕ ↔ ( ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ∧ 0 < ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) |
| 168 |
161 166 167
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℕ ) |
| 169 |
|
pcndvds2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
| 170 |
23 50 169
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
| 171 |
168 170
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℕ ∧ ¬ 𝑃 ∥ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) |
| 172 |
|
pczdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ) |
| 173 |
23 97 108 172
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ) |
| 174 |
111
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℤ ) |
| 175 |
|
dvdsval2 |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ≠ 0 ∧ 𝑧 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ↔ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ) ) |
| 176 |
174 119 97 175
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ↔ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ) ) |
| 177 |
173 176
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ) |
| 178 |
|
pczndvds2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) |
| 179 |
23 97 108 178
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) |
| 180 |
177 179
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ∧ ¬ 𝑃 ∥ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
| 181 |
|
pcdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ) |
| 182 |
23 100 181
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ) |
| 183 |
117
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℤ ) |
| 184 |
100
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℤ ) |
| 185 |
|
dvdsval2 |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ≠ 0 ∧ 𝑤 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ↔ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ) ) |
| 186 |
183 120 184 185
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ↔ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ) ) |
| 187 |
182 186
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ) |
| 188 |
100
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℝ ) |
| 189 |
117
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℝ ) |
| 190 |
100
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < 𝑤 ) |
| 191 |
117
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) |
| 192 |
188 189 190 191
|
divgt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 193 |
|
elnnz |
⊢ ( ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℕ ↔ ( ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ∧ 0 < ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) |
| 194 |
187 192 193
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℕ ) |
| 195 |
|
pcndvds2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 196 |
23 100 195
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 197 |
194 196
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℕ ∧ ¬ 𝑃 ∥ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) |
| 198 |
23 96 142 145 154 171 180 197
|
pcaddlem |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
| 199 |
198
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 200 |
199
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 201 |
22 200
|
biimtrrid |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 202 |
201
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∈ ℤ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 203 |
21 202
|
biimtrrid |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 0 ) → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 204 |
20 203
|
pm2.61dane |
⊢ ( 𝜑 → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 205 |
6 8 204
|
mp2and |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |