| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | simp2l | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℕ ) | 
						
							| 4 |  | znq | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) | 
						
							| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) | 
						
							| 6 | 2 | zcnd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 7 | 3 | nncnd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 8 |  | simp2r | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  𝐴  ≠  0 ) | 
						
							| 9 | 3 | nnne0d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  𝐵  ≠  0 ) | 
						
							| 10 | 6 7 8 9 | divne0d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  /  𝐵 )  ≠  0 ) | 
						
							| 11 |  | eqid | ⊢ sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  ) | 
						
							| 12 |  | eqid | ⊢ sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) | 
						
							| 13 | 11 12 | pcval | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( 𝐴  /  𝐵 )  ∈  ℚ  ∧  ( 𝐴  /  𝐵 )  ≠  0 ) )  →  ( 𝑃  pCnt  ( 𝐴  /  𝐵 ) )  =  ( ℩ 𝑧 ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) ) | 
						
							| 14 | 1 5 10 13 | syl12anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ( 𝑃  pCnt  ( 𝐴  /  𝐵 ) )  =  ( ℩ 𝑧 ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) ) | 
						
							| 15 |  | eqid | ⊢ sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  ) | 
						
							| 16 | 15 | pczpre | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 ) )  →  ( 𝑃  pCnt  𝐴 )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  ) ) | 
						
							| 17 | 16 | 3adant3 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ( 𝑃  pCnt  𝐴 )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  ) ) | 
						
							| 18 |  | nnz | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℤ ) | 
						
							| 19 |  | nnne0 | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ≠  0 ) | 
						
							| 20 | 18 19 | jca | ⊢ ( 𝐵  ∈  ℕ  →  ( 𝐵  ∈  ℤ  ∧  𝐵  ≠  0 ) ) | 
						
							| 21 |  | eqid | ⊢ sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  ) | 
						
							| 22 | 21 | pczpre | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐵  ∈  ℤ  ∧  𝐵  ≠  0 ) )  →  ( 𝑃  pCnt  𝐵 )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  ) ) | 
						
							| 23 | 20 22 | sylan2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐵  ∈  ℕ )  →  ( 𝑃  pCnt  𝐵 )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  ) ) | 
						
							| 24 | 23 | 3adant2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ( 𝑃  pCnt  𝐵 )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  ) ) | 
						
							| 25 | 17 24 | oveq12d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( 𝐴  /  𝐵 )  =  ( 𝐴  /  𝐵 ) | 
						
							| 27 | 25 26 | jctil | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  /  𝐵 )  =  ( 𝐴  /  𝐵 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 28 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  /  𝑦 )  =  ( 𝐴  /  𝑦 ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ↔  ( 𝐴  /  𝐵 )  =  ( 𝐴  /  𝑦 ) ) ) | 
						
							| 30 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑃 ↑ 𝑛 )  ∥  𝑥  ↔  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 ) ) | 
						
							| 31 | 30 | rabbidv | ⊢ ( 𝑥  =  𝐴  →  { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 }  =  { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ) | 
						
							| 32 | 31 | supeq1d | ⊢ ( 𝑥  =  𝐴  →  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) | 
						
							| 34 | 33 | eqeq2d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) )  ↔  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 35 | 29 34 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) )  ↔  ( ( 𝐴  /  𝐵 )  =  ( 𝐴  /  𝑦 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  /  𝑦 )  =  ( 𝐴  /  𝐵 ) ) | 
						
							| 37 | 36 | eqeq2d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  /  𝐵 )  =  ( 𝐴  /  𝑦 )  ↔  ( 𝐴  /  𝐵 )  =  ( 𝐴  /  𝐵 ) ) ) | 
						
							| 38 |  | breq2 | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑃 ↑ 𝑛 )  ∥  𝑦  ↔  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 ) ) | 
						
							| 39 | 38 | rabbidv | ⊢ ( 𝑦  =  𝐵  →  { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 }  =  { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ) | 
						
							| 40 | 39 | supeq1d | ⊢ ( 𝑦  =  𝐵  →  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  ) ) ) | 
						
							| 42 | 41 | eqeq2d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) )  ↔  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 43 | 37 42 | anbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝐴  /  𝐵 )  =  ( 𝐴  /  𝑦 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) )  ↔  ( ( 𝐴  /  𝐵 )  =  ( 𝐴  /  𝐵 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  ) ) ) ) ) | 
						
							| 44 | 35 43 | rspc2ev | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ  ∧  ( ( 𝐴  /  𝐵 )  =  ( 𝐴  /  𝐵 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐴 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝐵 } ,  ℝ ,   <  ) ) ) )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 45 | 2 3 27 44 | syl3anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 46 |  | ovex | ⊢ ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  ∈  V | 
						
							| 47 | 11 12 | pceu | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( 𝐴  /  𝐵 )  ∈  ℚ  ∧  ( 𝐴  /  𝐵 )  ≠  0 ) )  →  ∃! 𝑧 ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 48 | 1 5 10 47 | syl12anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ∃! 𝑧 ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 49 |  | eqeq1 | ⊢ ( 𝑧  =  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  →  ( 𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) )  ↔  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 50 | 49 | anbi2d | ⊢ ( 𝑧  =  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  →  ( ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) )  ↔  ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) ) | 
						
							| 51 | 50 | 2rexbidv | ⊢ ( 𝑧  =  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) )  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) ) | 
						
							| 52 | 51 | iota2 | ⊢ ( ( ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  ∈  V  ∧  ∃! 𝑧 ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) )  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) )  ↔  ( ℩ 𝑧 ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) )  =  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) ) ) ) | 
						
							| 53 | 46 48 52 | sylancr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) )  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) )  ↔  ( ℩ 𝑧 ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) )  =  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) ) ) ) | 
						
							| 54 | 45 53 | mpbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ( ℩ 𝑧 ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( ( 𝐴  /  𝐵 )  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) )  =  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) ) ) | 
						
							| 55 | 14 54 | eqtrd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ )  →  ( 𝑃  pCnt  ( 𝐴  /  𝐵 ) )  =  ( ( 𝑃  pCnt  𝐴 )  −  ( 𝑃  pCnt  𝐵 ) ) ) |