Metamath Proof Explorer


Theorem padicabvf

Description: The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses qrng.q
|- Q = ( CCfld |`s QQ )
qabsabv.a
|- A = ( AbsVal ` Q )
padic.j
|- J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) )
Assertion padicabvf
|- J : Prime --> A

Proof

Step Hyp Ref Expression
1 qrng.q
 |-  Q = ( CCfld |`s QQ )
2 qabsabv.a
 |-  A = ( AbsVal ` Q )
3 padic.j
 |-  J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) )
4 qex
 |-  QQ e. _V
5 4 mptex
 |-  ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) e. _V
6 5 3 fnmpti
 |-  J Fn Prime
7 3 padicfval
 |-  ( p e. Prime -> ( J ` p ) = ( x e. QQ |-> if ( x = 0 , 0 , ( p ^ -u ( p pCnt x ) ) ) ) )
8 prmnn
 |-  ( p e. Prime -> p e. NN )
9 8 ad2antrr
 |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> p e. NN )
10 9 nncnd
 |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> p e. CC )
11 9 nnne0d
 |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> p =/= 0 )
12 df-ne
 |-  ( x =/= 0 <-> -. x = 0 )
13 pcqcl
 |-  ( ( p e. Prime /\ ( x e. QQ /\ x =/= 0 ) ) -> ( p pCnt x ) e. ZZ )
14 13 anassrs
 |-  ( ( ( p e. Prime /\ x e. QQ ) /\ x =/= 0 ) -> ( p pCnt x ) e. ZZ )
15 12 14 sylan2br
 |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( p pCnt x ) e. ZZ )
16 10 11 15 expnegd
 |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( p ^ -u ( p pCnt x ) ) = ( 1 / ( p ^ ( p pCnt x ) ) ) )
17 10 11 15 exprecd
 |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( ( 1 / p ) ^ ( p pCnt x ) ) = ( 1 / ( p ^ ( p pCnt x ) ) ) )
18 16 17 eqtr4d
 |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( p ^ -u ( p pCnt x ) ) = ( ( 1 / p ) ^ ( p pCnt x ) ) )
19 18 ifeq2da
 |-  ( ( p e. Prime /\ x e. QQ ) -> if ( x = 0 , 0 , ( p ^ -u ( p pCnt x ) ) ) = if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) )
20 19 mpteq2dva
 |-  ( p e. Prime -> ( x e. QQ |-> if ( x = 0 , 0 , ( p ^ -u ( p pCnt x ) ) ) ) = ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) )
21 7 20 eqtrd
 |-  ( p e. Prime -> ( J ` p ) = ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) )
22 8 nnrecred
 |-  ( p e. Prime -> ( 1 / p ) e. RR )
23 8 nnred
 |-  ( p e. Prime -> p e. RR )
24 prmgt1
 |-  ( p e. Prime -> 1 < p )
25 recgt1i
 |-  ( ( p e. RR /\ 1 < p ) -> ( 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) )
26 23 24 25 syl2anc
 |-  ( p e. Prime -> ( 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) )
27 26 simpld
 |-  ( p e. Prime -> 0 < ( 1 / p ) )
28 26 simprd
 |-  ( p e. Prime -> ( 1 / p ) < 1 )
29 0xr
 |-  0 e. RR*
30 1xr
 |-  1 e. RR*
31 elioo2
 |-  ( ( 0 e. RR* /\ 1 e. RR* ) -> ( ( 1 / p ) e. ( 0 (,) 1 ) <-> ( ( 1 / p ) e. RR /\ 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) ) )
32 29 30 31 mp2an
 |-  ( ( 1 / p ) e. ( 0 (,) 1 ) <-> ( ( 1 / p ) e. RR /\ 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) )
33 22 27 28 32 syl3anbrc
 |-  ( p e. Prime -> ( 1 / p ) e. ( 0 (,) 1 ) )
34 eqid
 |-  ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) = ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) )
35 1 2 34 padicabv
 |-  ( ( p e. Prime /\ ( 1 / p ) e. ( 0 (,) 1 ) ) -> ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) e. A )
36 33 35 mpdan
 |-  ( p e. Prime -> ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) e. A )
37 21 36 eqeltrd
 |-  ( p e. Prime -> ( J ` p ) e. A )
38 37 rgen
 |-  A. p e. Prime ( J ` p ) e. A
39 ffnfv
 |-  ( J : Prime --> A <-> ( J Fn Prime /\ A. p e. Prime ( J ` p ) e. A ) )
40 6 38 39 mpbir2an
 |-  J : Prime --> A