Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
2 |
|
qabsabv.a |
|- A = ( AbsVal ` Q ) |
3 |
|
padic.j |
|- J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) |
4 |
|
qex |
|- QQ e. _V |
5 |
4
|
mptex |
|- ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) e. _V |
6 |
5 3
|
fnmpti |
|- J Fn Prime |
7 |
3
|
padicfval |
|- ( p e. Prime -> ( J ` p ) = ( x e. QQ |-> if ( x = 0 , 0 , ( p ^ -u ( p pCnt x ) ) ) ) ) |
8 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
9 |
8
|
ad2antrr |
|- ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> p e. NN ) |
10 |
9
|
nncnd |
|- ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> p e. CC ) |
11 |
9
|
nnne0d |
|- ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> p =/= 0 ) |
12 |
|
df-ne |
|- ( x =/= 0 <-> -. x = 0 ) |
13 |
|
pcqcl |
|- ( ( p e. Prime /\ ( x e. QQ /\ x =/= 0 ) ) -> ( p pCnt x ) e. ZZ ) |
14 |
13
|
anassrs |
|- ( ( ( p e. Prime /\ x e. QQ ) /\ x =/= 0 ) -> ( p pCnt x ) e. ZZ ) |
15 |
12 14
|
sylan2br |
|- ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( p pCnt x ) e. ZZ ) |
16 |
10 11 15
|
expnegd |
|- ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( p ^ -u ( p pCnt x ) ) = ( 1 / ( p ^ ( p pCnt x ) ) ) ) |
17 |
10 11 15
|
exprecd |
|- ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( ( 1 / p ) ^ ( p pCnt x ) ) = ( 1 / ( p ^ ( p pCnt x ) ) ) ) |
18 |
16 17
|
eqtr4d |
|- ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( p ^ -u ( p pCnt x ) ) = ( ( 1 / p ) ^ ( p pCnt x ) ) ) |
19 |
18
|
ifeq2da |
|- ( ( p e. Prime /\ x e. QQ ) -> if ( x = 0 , 0 , ( p ^ -u ( p pCnt x ) ) ) = if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) |
20 |
19
|
mpteq2dva |
|- ( p e. Prime -> ( x e. QQ |-> if ( x = 0 , 0 , ( p ^ -u ( p pCnt x ) ) ) ) = ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) ) |
21 |
7 20
|
eqtrd |
|- ( p e. Prime -> ( J ` p ) = ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) ) |
22 |
8
|
nnrecred |
|- ( p e. Prime -> ( 1 / p ) e. RR ) |
23 |
8
|
nnred |
|- ( p e. Prime -> p e. RR ) |
24 |
|
prmgt1 |
|- ( p e. Prime -> 1 < p ) |
25 |
|
recgt1i |
|- ( ( p e. RR /\ 1 < p ) -> ( 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) ) |
26 |
23 24 25
|
syl2anc |
|- ( p e. Prime -> ( 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) ) |
27 |
26
|
simpld |
|- ( p e. Prime -> 0 < ( 1 / p ) ) |
28 |
26
|
simprd |
|- ( p e. Prime -> ( 1 / p ) < 1 ) |
29 |
|
0xr |
|- 0 e. RR* |
30 |
|
1xr |
|- 1 e. RR* |
31 |
|
elioo2 |
|- ( ( 0 e. RR* /\ 1 e. RR* ) -> ( ( 1 / p ) e. ( 0 (,) 1 ) <-> ( ( 1 / p ) e. RR /\ 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) ) ) |
32 |
29 30 31
|
mp2an |
|- ( ( 1 / p ) e. ( 0 (,) 1 ) <-> ( ( 1 / p ) e. RR /\ 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) ) |
33 |
22 27 28 32
|
syl3anbrc |
|- ( p e. Prime -> ( 1 / p ) e. ( 0 (,) 1 ) ) |
34 |
|
eqid |
|- ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) = ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) |
35 |
1 2 34
|
padicabv |
|- ( ( p e. Prime /\ ( 1 / p ) e. ( 0 (,) 1 ) ) -> ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) e. A ) |
36 |
33 35
|
mpdan |
|- ( p e. Prime -> ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) e. A ) |
37 |
21 36
|
eqeltrd |
|- ( p e. Prime -> ( J ` p ) e. A ) |
38 |
37
|
rgen |
|- A. p e. Prime ( J ` p ) e. A |
39 |
|
ffnfv |
|- ( J : Prime --> A <-> ( J Fn Prime /\ A. p e. Prime ( J ` p ) e. A ) ) |
40 |
6 38 39
|
mpbir2an |
|- J : Prime --> A |