| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q |  |-  Q = ( CCfld |`s QQ ) | 
						
							| 2 |  | qabsabv.a |  |-  A = ( AbsVal ` Q ) | 
						
							| 3 |  | padic.j |  |-  J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) | 
						
							| 4 |  | qex |  |-  QQ e. _V | 
						
							| 5 | 4 | mptex |  |-  ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) e. _V | 
						
							| 6 | 5 3 | fnmpti |  |-  J Fn Prime | 
						
							| 7 | 3 | padicfval |  |-  ( p e. Prime -> ( J ` p ) = ( x e. QQ |-> if ( x = 0 , 0 , ( p ^ -u ( p pCnt x ) ) ) ) ) | 
						
							| 8 |  | prmnn |  |-  ( p e. Prime -> p e. NN ) | 
						
							| 9 | 8 | ad2antrr |  |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> p e. NN ) | 
						
							| 10 | 9 | nncnd |  |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> p e. CC ) | 
						
							| 11 | 9 | nnne0d |  |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> p =/= 0 ) | 
						
							| 12 |  | df-ne |  |-  ( x =/= 0 <-> -. x = 0 ) | 
						
							| 13 |  | pcqcl |  |-  ( ( p e. Prime /\ ( x e. QQ /\ x =/= 0 ) ) -> ( p pCnt x ) e. ZZ ) | 
						
							| 14 | 13 | anassrs |  |-  ( ( ( p e. Prime /\ x e. QQ ) /\ x =/= 0 ) -> ( p pCnt x ) e. ZZ ) | 
						
							| 15 | 12 14 | sylan2br |  |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( p pCnt x ) e. ZZ ) | 
						
							| 16 | 10 11 15 | expnegd |  |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( p ^ -u ( p pCnt x ) ) = ( 1 / ( p ^ ( p pCnt x ) ) ) ) | 
						
							| 17 | 10 11 15 | exprecd |  |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( ( 1 / p ) ^ ( p pCnt x ) ) = ( 1 / ( p ^ ( p pCnt x ) ) ) ) | 
						
							| 18 | 16 17 | eqtr4d |  |-  ( ( ( p e. Prime /\ x e. QQ ) /\ -. x = 0 ) -> ( p ^ -u ( p pCnt x ) ) = ( ( 1 / p ) ^ ( p pCnt x ) ) ) | 
						
							| 19 | 18 | ifeq2da |  |-  ( ( p e. Prime /\ x e. QQ ) -> if ( x = 0 , 0 , ( p ^ -u ( p pCnt x ) ) ) = if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) | 
						
							| 20 | 19 | mpteq2dva |  |-  ( p e. Prime -> ( x e. QQ |-> if ( x = 0 , 0 , ( p ^ -u ( p pCnt x ) ) ) ) = ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) ) | 
						
							| 21 | 7 20 | eqtrd |  |-  ( p e. Prime -> ( J ` p ) = ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) ) | 
						
							| 22 | 8 | nnrecred |  |-  ( p e. Prime -> ( 1 / p ) e. RR ) | 
						
							| 23 | 8 | nnred |  |-  ( p e. Prime -> p e. RR ) | 
						
							| 24 |  | prmgt1 |  |-  ( p e. Prime -> 1 < p ) | 
						
							| 25 |  | recgt1i |  |-  ( ( p e. RR /\ 1 < p ) -> ( 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) ) | 
						
							| 26 | 23 24 25 | syl2anc |  |-  ( p e. Prime -> ( 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) ) | 
						
							| 27 | 26 | simpld |  |-  ( p e. Prime -> 0 < ( 1 / p ) ) | 
						
							| 28 | 26 | simprd |  |-  ( p e. Prime -> ( 1 / p ) < 1 ) | 
						
							| 29 |  | 0xr |  |-  0 e. RR* | 
						
							| 30 |  | 1xr |  |-  1 e. RR* | 
						
							| 31 |  | elioo2 |  |-  ( ( 0 e. RR* /\ 1 e. RR* ) -> ( ( 1 / p ) e. ( 0 (,) 1 ) <-> ( ( 1 / p ) e. RR /\ 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) ) ) | 
						
							| 32 | 29 30 31 | mp2an |  |-  ( ( 1 / p ) e. ( 0 (,) 1 ) <-> ( ( 1 / p ) e. RR /\ 0 < ( 1 / p ) /\ ( 1 / p ) < 1 ) ) | 
						
							| 33 | 22 27 28 32 | syl3anbrc |  |-  ( p e. Prime -> ( 1 / p ) e. ( 0 (,) 1 ) ) | 
						
							| 34 |  | eqid |  |-  ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) = ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) | 
						
							| 35 | 1 2 34 | padicabv |  |-  ( ( p e. Prime /\ ( 1 / p ) e. ( 0 (,) 1 ) ) -> ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) e. A ) | 
						
							| 36 | 33 35 | mpdan |  |-  ( p e. Prime -> ( x e. QQ |-> if ( x = 0 , 0 , ( ( 1 / p ) ^ ( p pCnt x ) ) ) ) e. A ) | 
						
							| 37 | 21 36 | eqeltrd |  |-  ( p e. Prime -> ( J ` p ) e. A ) | 
						
							| 38 | 37 | rgen |  |-  A. p e. Prime ( J ` p ) e. A | 
						
							| 39 |  | ffnfv |  |-  ( J : Prime --> A <-> ( J Fn Prime /\ A. p e. Prime ( J ` p ) e. A ) ) | 
						
							| 40 | 6 38 39 | mpbir2an |  |-  J : Prime --> A |