Metamath Proof Explorer


Theorem padicabvf

Description: The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
padic.j J=qxifx=00qqpCntx
Assertion padicabvf J:A

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 padic.j J=qxifx=00qqpCntx
4 qex V
5 4 mptex xifx=00qqpCntxV
6 5 3 fnmpti JFn
7 3 padicfval pJp=xifx=00pppCntx
8 prmnn pp
9 8 ad2antrr px¬x=0p
10 9 nncnd px¬x=0p
11 9 nnne0d px¬x=0p0
12 df-ne x0¬x=0
13 pcqcl pxx0ppCntx
14 13 anassrs pxx0ppCntx
15 12 14 sylan2br px¬x=0ppCntx
16 10 11 15 expnegd px¬x=0pppCntx=1pppCntx
17 10 11 15 exprecd px¬x=01pppCntx=1pppCntx
18 16 17 eqtr4d px¬x=0pppCntx=1pppCntx
19 18 ifeq2da pxifx=00pppCntx=ifx=001pppCntx
20 19 mpteq2dva pxifx=00pppCntx=xifx=001pppCntx
21 7 20 eqtrd pJp=xifx=001pppCntx
22 8 nnrecred p1p
23 8 nnred pp
24 prmgt1 p1<p
25 recgt1i p1<p0<1p1p<1
26 23 24 25 syl2anc p0<1p1p<1
27 26 simpld p0<1p
28 26 simprd p1p<1
29 0xr 0*
30 1xr 1*
31 elioo2 0*1*1p011p0<1p1p<1
32 29 30 31 mp2an 1p011p0<1p1p<1
33 22 27 28 32 syl3anbrc p1p01
34 eqid xifx=001pppCntx=xifx=001pppCntx
35 1 2 34 padicabv p1p01xifx=001pppCntxA
36 33 35 mpdan pxifx=001pppCntxA
37 21 36 eqeltrd pJpA
38 37 rgen pJpA
39 ffnfv J:AJFnpJpA
40 6 38 39 mpbir2an J:A