Metamath Proof Explorer


Theorem padicabvf

Description: The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses qrng.q Q = fld 𝑠
qabsabv.a A = AbsVal Q
padic.j J = q x if x = 0 0 q q pCnt x
Assertion padicabvf J : A

Proof

Step Hyp Ref Expression
1 qrng.q Q = fld 𝑠
2 qabsabv.a A = AbsVal Q
3 padic.j J = q x if x = 0 0 q q pCnt x
4 qex V
5 4 mptex x if x = 0 0 q q pCnt x V
6 5 3 fnmpti J Fn
7 3 padicfval p J p = x if x = 0 0 p p pCnt x
8 prmnn p p
9 8 ad2antrr p x ¬ x = 0 p
10 9 nncnd p x ¬ x = 0 p
11 9 nnne0d p x ¬ x = 0 p 0
12 df-ne x 0 ¬ x = 0
13 pcqcl p x x 0 p pCnt x
14 13 anassrs p x x 0 p pCnt x
15 12 14 sylan2br p x ¬ x = 0 p pCnt x
16 10 11 15 expnegd p x ¬ x = 0 p p pCnt x = 1 p p pCnt x
17 10 11 15 exprecd p x ¬ x = 0 1 p p pCnt x = 1 p p pCnt x
18 16 17 eqtr4d p x ¬ x = 0 p p pCnt x = 1 p p pCnt x
19 18 ifeq2da p x if x = 0 0 p p pCnt x = if x = 0 0 1 p p pCnt x
20 19 mpteq2dva p x if x = 0 0 p p pCnt x = x if x = 0 0 1 p p pCnt x
21 7 20 eqtrd p J p = x if x = 0 0 1 p p pCnt x
22 8 nnrecred p 1 p
23 8 nnred p p
24 prmgt1 p 1 < p
25 recgt1i p 1 < p 0 < 1 p 1 p < 1
26 23 24 25 syl2anc p 0 < 1 p 1 p < 1
27 26 simpld p 0 < 1 p
28 26 simprd p 1 p < 1
29 0xr 0 *
30 1xr 1 *
31 elioo2 0 * 1 * 1 p 0 1 1 p 0 < 1 p 1 p < 1
32 29 30 31 mp2an 1 p 0 1 1 p 0 < 1 p 1 p < 1
33 22 27 28 32 syl3anbrc p 1 p 0 1
34 eqid x if x = 0 0 1 p p pCnt x = x if x = 0 0 1 p p pCnt x
35 1 2 34 padicabv p 1 p 0 1 x if x = 0 0 1 p p pCnt x A
36 33 35 mpdan p x if x = 0 0 1 p p pCnt x A
37 21 36 eqeltrd p J p A
38 37 rgen p J p A
39 ffnfv J : A J Fn p J p A
40 6 38 39 mpbir2an J : A