| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | qabsabv.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑄 ) | 
						
							| 3 |  | padic.j | ⊢ 𝐽  =  ( 𝑞  ∈  ℙ  ↦  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) ) ) | 
						
							| 4 |  | qex | ⊢ ℚ  ∈  V | 
						
							| 5 | 4 | mptex | ⊢ ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) )  ∈  V | 
						
							| 6 | 5 3 | fnmpti | ⊢ 𝐽  Fn  ℙ | 
						
							| 7 | 3 | padicfval | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝐽 ‘ 𝑝 )  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑝 ↑ - ( 𝑝  pCnt  𝑥 ) ) ) ) ) | 
						
							| 8 |  | prmnn | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ ) | 
						
							| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑥  ∈  ℚ )  ∧  ¬  𝑥  =  0 )  →  𝑝  ∈  ℕ ) | 
						
							| 10 | 9 | nncnd | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑥  ∈  ℚ )  ∧  ¬  𝑥  =  0 )  →  𝑝  ∈  ℂ ) | 
						
							| 11 | 9 | nnne0d | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑥  ∈  ℚ )  ∧  ¬  𝑥  =  0 )  →  𝑝  ≠  0 ) | 
						
							| 12 |  | df-ne | ⊢ ( 𝑥  ≠  0  ↔  ¬  𝑥  =  0 ) | 
						
							| 13 |  | pcqcl | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ( 𝑥  ∈  ℚ  ∧  𝑥  ≠  0 ) )  →  ( 𝑝  pCnt  𝑥 )  ∈  ℤ ) | 
						
							| 14 | 13 | anassrs | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑥  ∈  ℚ )  ∧  𝑥  ≠  0 )  →  ( 𝑝  pCnt  𝑥 )  ∈  ℤ ) | 
						
							| 15 | 12 14 | sylan2br | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑥  ∈  ℚ )  ∧  ¬  𝑥  =  0 )  →  ( 𝑝  pCnt  𝑥 )  ∈  ℤ ) | 
						
							| 16 | 10 11 15 | expnegd | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑥  ∈  ℚ )  ∧  ¬  𝑥  =  0 )  →  ( 𝑝 ↑ - ( 𝑝  pCnt  𝑥 ) )  =  ( 1  /  ( 𝑝 ↑ ( 𝑝  pCnt  𝑥 ) ) ) ) | 
						
							| 17 | 10 11 15 | exprecd | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑥  ∈  ℚ )  ∧  ¬  𝑥  =  0 )  →  ( ( 1  /  𝑝 ) ↑ ( 𝑝  pCnt  𝑥 ) )  =  ( 1  /  ( 𝑝 ↑ ( 𝑝  pCnt  𝑥 ) ) ) ) | 
						
							| 18 | 16 17 | eqtr4d | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑥  ∈  ℚ )  ∧  ¬  𝑥  =  0 )  →  ( 𝑝 ↑ - ( 𝑝  pCnt  𝑥 ) )  =  ( ( 1  /  𝑝 ) ↑ ( 𝑝  pCnt  𝑥 ) ) ) | 
						
							| 19 | 18 | ifeq2da | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑥  ∈  ℚ )  →  if ( 𝑥  =  0 ,  0 ,  ( 𝑝 ↑ - ( 𝑝  pCnt  𝑥 ) ) )  =  if ( 𝑥  =  0 ,  0 ,  ( ( 1  /  𝑝 ) ↑ ( 𝑝  pCnt  𝑥 ) ) ) ) | 
						
							| 20 | 19 | mpteq2dva | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑝 ↑ - ( 𝑝  pCnt  𝑥 ) ) ) )  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( ( 1  /  𝑝 ) ↑ ( 𝑝  pCnt  𝑥 ) ) ) ) ) | 
						
							| 21 | 7 20 | eqtrd | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝐽 ‘ 𝑝 )  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( ( 1  /  𝑝 ) ↑ ( 𝑝  pCnt  𝑥 ) ) ) ) ) | 
						
							| 22 | 8 | nnrecred | ⊢ ( 𝑝  ∈  ℙ  →  ( 1  /  𝑝 )  ∈  ℝ ) | 
						
							| 23 | 8 | nnred | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℝ ) | 
						
							| 24 |  | prmgt1 | ⊢ ( 𝑝  ∈  ℙ  →  1  <  𝑝 ) | 
						
							| 25 |  | recgt1i | ⊢ ( ( 𝑝  ∈  ℝ  ∧  1  <  𝑝 )  →  ( 0  <  ( 1  /  𝑝 )  ∧  ( 1  /  𝑝 )  <  1 ) ) | 
						
							| 26 | 23 24 25 | syl2anc | ⊢ ( 𝑝  ∈  ℙ  →  ( 0  <  ( 1  /  𝑝 )  ∧  ( 1  /  𝑝 )  <  1 ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( 𝑝  ∈  ℙ  →  0  <  ( 1  /  𝑝 ) ) | 
						
							| 28 | 26 | simprd | ⊢ ( 𝑝  ∈  ℙ  →  ( 1  /  𝑝 )  <  1 ) | 
						
							| 29 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 30 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 31 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ* )  →  ( ( 1  /  𝑝 )  ∈  ( 0 (,) 1 )  ↔  ( ( 1  /  𝑝 )  ∈  ℝ  ∧  0  <  ( 1  /  𝑝 )  ∧  ( 1  /  𝑝 )  <  1 ) ) ) | 
						
							| 32 | 29 30 31 | mp2an | ⊢ ( ( 1  /  𝑝 )  ∈  ( 0 (,) 1 )  ↔  ( ( 1  /  𝑝 )  ∈  ℝ  ∧  0  <  ( 1  /  𝑝 )  ∧  ( 1  /  𝑝 )  <  1 ) ) | 
						
							| 33 | 22 27 28 32 | syl3anbrc | ⊢ ( 𝑝  ∈  ℙ  →  ( 1  /  𝑝 )  ∈  ( 0 (,) 1 ) ) | 
						
							| 34 |  | eqid | ⊢ ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( ( 1  /  𝑝 ) ↑ ( 𝑝  pCnt  𝑥 ) ) ) )  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( ( 1  /  𝑝 ) ↑ ( 𝑝  pCnt  𝑥 ) ) ) ) | 
						
							| 35 | 1 2 34 | padicabv | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ( 1  /  𝑝 )  ∈  ( 0 (,) 1 ) )  →  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( ( 1  /  𝑝 ) ↑ ( 𝑝  pCnt  𝑥 ) ) ) )  ∈  𝐴 ) | 
						
							| 36 | 33 35 | mpdan | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( ( 1  /  𝑝 ) ↑ ( 𝑝  pCnt  𝑥 ) ) ) )  ∈  𝐴 ) | 
						
							| 37 | 21 36 | eqeltrd | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝐽 ‘ 𝑝 )  ∈  𝐴 ) | 
						
							| 38 | 37 | rgen | ⊢ ∀ 𝑝  ∈  ℙ ( 𝐽 ‘ 𝑝 )  ∈  𝐴 | 
						
							| 39 |  | ffnfv | ⊢ ( 𝐽 : ℙ ⟶ 𝐴  ↔  ( 𝐽  Fn  ℙ  ∧  ∀ 𝑝  ∈  ℙ ( 𝐽 ‘ 𝑝 )  ∈  𝐴 ) ) | 
						
							| 40 | 6 38 39 | mpbir2an | ⊢ 𝐽 : ℙ ⟶ 𝐴 |