Step |
Hyp |
Ref |
Expression |
1 |
|
padicval.j |
⊢ 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) ) |
2 |
|
id |
⊢ ( 𝑞 = 𝑃 → 𝑞 = 𝑃 ) |
3 |
|
oveq1 |
⊢ ( 𝑞 = 𝑃 → ( 𝑞 pCnt 𝑥 ) = ( 𝑃 pCnt 𝑥 ) ) |
4 |
3
|
negeqd |
⊢ ( 𝑞 = 𝑃 → - ( 𝑞 pCnt 𝑥 ) = - ( 𝑃 pCnt 𝑥 ) ) |
5 |
2 4
|
oveq12d |
⊢ ( 𝑞 = 𝑃 → ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) = ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) |
6 |
5
|
ifeq2d |
⊢ ( 𝑞 = 𝑃 → if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) = if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) |
7 |
6
|
mpteq2dv |
⊢ ( 𝑞 = 𝑃 → ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
8 |
|
qex |
⊢ ℚ ∈ V |
9 |
8
|
mptex |
⊢ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) ∈ V |
10 |
7 1 9
|
fvmpt |
⊢ ( 𝑃 ∈ ℙ → ( 𝐽 ‘ 𝑃 ) = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) ) |