| Step | Hyp | Ref | Expression | 
						
							| 1 |  | padicval.j | ⊢ 𝐽  =  ( 𝑞  ∈  ℙ  ↦  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) ) ) | 
						
							| 2 |  | id | ⊢ ( 𝑞  =  𝑃  →  𝑞  =  𝑃 ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑞  =  𝑃  →  ( 𝑞  pCnt  𝑥 )  =  ( 𝑃  pCnt  𝑥 ) ) | 
						
							| 4 | 3 | negeqd | ⊢ ( 𝑞  =  𝑃  →  - ( 𝑞  pCnt  𝑥 )  =  - ( 𝑃  pCnt  𝑥 ) ) | 
						
							| 5 | 2 4 | oveq12d | ⊢ ( 𝑞  =  𝑃  →  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) )  =  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) ) ) | 
						
							| 6 | 5 | ifeq2d | ⊢ ( 𝑞  =  𝑃  →  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) )  =  if ( 𝑥  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) ) ) ) | 
						
							| 7 | 6 | mpteq2dv | ⊢ ( 𝑞  =  𝑃  →  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) )  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) ) ) ) ) | 
						
							| 8 |  | qex | ⊢ ℚ  ∈  V | 
						
							| 9 | 8 | mptex | ⊢ ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) ) ) )  ∈  V | 
						
							| 10 | 7 1 9 | fvmpt | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝐽 ‘ 𝑃 )  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) ) ) ) ) |