Metamath Proof Explorer


Theorem padicfval

Description: Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypothesis padicval.j 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) )
Assertion padicfval ( 𝑃 ∈ ℙ → ( 𝐽𝑃 ) = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 padicval.j 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) )
2 id ( 𝑞 = 𝑃𝑞 = 𝑃 )
3 oveq1 ( 𝑞 = 𝑃 → ( 𝑞 pCnt 𝑥 ) = ( 𝑃 pCnt 𝑥 ) )
4 3 negeqd ( 𝑞 = 𝑃 → - ( 𝑞 pCnt 𝑥 ) = - ( 𝑃 pCnt 𝑥 ) )
5 2 4 oveq12d ( 𝑞 = 𝑃 → ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) = ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) )
6 5 ifeq2d ( 𝑞 = 𝑃 → if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) = if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) )
7 6 mpteq2dv ( 𝑞 = 𝑃 → ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) )
8 qex ℚ ∈ V
9 8 mptex ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) ∈ V
10 7 1 9 fvmpt ( 𝑃 ∈ ℙ → ( 𝐽𝑃 ) = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) )