Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Ostrowski's theorem
padicfval
Next ⟩
padicval
Metamath Proof Explorer
Ascii
Unicode
Theorem
padicfval
Description:
Value of the p-adic absolute value.
(Contributed by
Mario Carneiro
, 8-Sep-2014)
Ref
Expression
Hypothesis
padicval.j
⊢
J
=
q
∈
ℙ
⟼
x
∈
ℚ
⟼
if
x
=
0
0
q
−
q
pCnt
x
Assertion
padicfval
⊢
P
∈
ℙ
→
J
⁡
P
=
x
∈
ℚ
⟼
if
x
=
0
0
P
−
P
pCnt
x
Proof
Step
Hyp
Ref
Expression
1
padicval.j
⊢
J
=
q
∈
ℙ
⟼
x
∈
ℚ
⟼
if
x
=
0
0
q
−
q
pCnt
x
2
id
⊢
q
=
P
→
q
=
P
3
oveq1
⊢
q
=
P
→
q
pCnt
x
=
P
pCnt
x
4
3
negeqd
⊢
q
=
P
→
−
q
pCnt
x
=
−
P
pCnt
x
5
2
4
oveq12d
⊢
q
=
P
→
q
−
q
pCnt
x
=
P
−
P
pCnt
x
6
5
ifeq2d
⊢
q
=
P
→
if
x
=
0
0
q
−
q
pCnt
x
=
if
x
=
0
0
P
−
P
pCnt
x
7
6
mpteq2dv
⊢
q
=
P
→
x
∈
ℚ
⟼
if
x
=
0
0
q
−
q
pCnt
x
=
x
∈
ℚ
⟼
if
x
=
0
0
P
−
P
pCnt
x
8
qex
⊢
ℚ
∈
V
9
8
mptex
⊢
x
∈
ℚ
⟼
if
x
=
0
0
P
−
P
pCnt
x
∈
V
10
7
1
9
fvmpt
⊢
P
∈
ℙ
→
J
⁡
P
=
x
∈
ℚ
⟼
if
x
=
0
0
P
−
P
pCnt
x