Metamath Proof Explorer


Theorem padicval

Description: Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypothesis padicval.j J=qxifx=00qqpCntx
Assertion padicval PXJPX=ifX=00PPpCntX

Proof

Step Hyp Ref Expression
1 padicval.j J=qxifx=00qqpCntx
2 1 padicfval PJP=xifx=00PPpCntx
3 2 fveq1d PJPX=xifx=00PPpCntxX
4 eqeq1 x=Xx=0X=0
5 oveq2 x=XPpCntx=PpCntX
6 5 negeqd x=XPpCntx=PpCntX
7 6 oveq2d x=XPPpCntx=PPpCntX
8 4 7 ifbieq2d x=Xifx=00PPpCntx=ifX=00PPpCntX
9 eqid xifx=00PPpCntx=xifx=00PPpCntx
10 c0ex 0V
11 ovex PPpCntXV
12 10 11 ifex ifX=00PPpCntXV
13 8 9 12 fvmpt Xxifx=00PPpCntxX=ifX=00PPpCntX
14 3 13 sylan9eq PXJPX=ifX=00PPpCntX