Step |
Hyp |
Ref |
Expression |
1 |
|
padicval.j |
|- J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) |
2 |
1
|
padicfval |
|- ( P e. Prime -> ( J ` P ) = ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) ) |
3 |
2
|
fveq1d |
|- ( P e. Prime -> ( ( J ` P ) ` X ) = ( ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) ` X ) ) |
4 |
|
eqeq1 |
|- ( x = X -> ( x = 0 <-> X = 0 ) ) |
5 |
|
oveq2 |
|- ( x = X -> ( P pCnt x ) = ( P pCnt X ) ) |
6 |
5
|
negeqd |
|- ( x = X -> -u ( P pCnt x ) = -u ( P pCnt X ) ) |
7 |
6
|
oveq2d |
|- ( x = X -> ( P ^ -u ( P pCnt x ) ) = ( P ^ -u ( P pCnt X ) ) ) |
8 |
4 7
|
ifbieq2d |
|- ( x = X -> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) = if ( X = 0 , 0 , ( P ^ -u ( P pCnt X ) ) ) ) |
9 |
|
eqid |
|- ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) = ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) |
10 |
|
c0ex |
|- 0 e. _V |
11 |
|
ovex |
|- ( P ^ -u ( P pCnt X ) ) e. _V |
12 |
10 11
|
ifex |
|- if ( X = 0 , 0 , ( P ^ -u ( P pCnt X ) ) ) e. _V |
13 |
8 9 12
|
fvmpt |
|- ( X e. QQ -> ( ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) ` X ) = if ( X = 0 , 0 , ( P ^ -u ( P pCnt X ) ) ) ) |
14 |
3 13
|
sylan9eq |
|- ( ( P e. Prime /\ X e. QQ ) -> ( ( J ` P ) ` X ) = if ( X = 0 , 0 , ( P ^ -u ( P pCnt X ) ) ) ) |