| Step | Hyp | Ref | Expression | 
						
							| 1 |  | padicval.j |  |-  J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) | 
						
							| 2 | 1 | padicfval |  |-  ( P e. Prime -> ( J ` P ) = ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) ) | 
						
							| 3 | 2 | fveq1d |  |-  ( P e. Prime -> ( ( J ` P ) ` X ) = ( ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) ` X ) ) | 
						
							| 4 |  | eqeq1 |  |-  ( x = X -> ( x = 0 <-> X = 0 ) ) | 
						
							| 5 |  | oveq2 |  |-  ( x = X -> ( P pCnt x ) = ( P pCnt X ) ) | 
						
							| 6 | 5 | negeqd |  |-  ( x = X -> -u ( P pCnt x ) = -u ( P pCnt X ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( x = X -> ( P ^ -u ( P pCnt x ) ) = ( P ^ -u ( P pCnt X ) ) ) | 
						
							| 8 | 4 7 | ifbieq2d |  |-  ( x = X -> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) = if ( X = 0 , 0 , ( P ^ -u ( P pCnt X ) ) ) ) | 
						
							| 9 |  | eqid |  |-  ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) = ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) | 
						
							| 10 |  | c0ex |  |-  0 e. _V | 
						
							| 11 |  | ovex |  |-  ( P ^ -u ( P pCnt X ) ) e. _V | 
						
							| 12 | 10 11 | ifex |  |-  if ( X = 0 , 0 , ( P ^ -u ( P pCnt X ) ) ) e. _V | 
						
							| 13 | 8 9 12 | fvmpt |  |-  ( X e. QQ -> ( ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) ` X ) = if ( X = 0 , 0 , ( P ^ -u ( P pCnt X ) ) ) ) | 
						
							| 14 | 3 13 | sylan9eq |  |-  ( ( P e. Prime /\ X e. QQ ) -> ( ( J ` P ) ` X ) = if ( X = 0 , 0 , ( P ^ -u ( P pCnt X ) ) ) ) |