| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ostth2lem1.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | ostth2lem1.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | ostth2lem1.3 |  |-  ( ( ph /\ n e. NN ) -> ( A ^ n ) <_ ( n x. B ) ) | 
						
							| 4 |  | 2re |  |-  2 e. RR | 
						
							| 5 | 2 | adantr |  |-  ( ( ph /\ 1 < A ) -> B e. RR ) | 
						
							| 6 |  | remulcl |  |-  ( ( 2 e. RR /\ B e. RR ) -> ( 2 x. B ) e. RR ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( ( ph /\ 1 < A ) -> ( 2 x. B ) e. RR ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ 1 < A ) -> 1 < A ) | 
						
							| 9 |  | 1re |  |-  1 e. RR | 
						
							| 10 | 1 | adantr |  |-  ( ( ph /\ 1 < A ) -> A e. RR ) | 
						
							| 11 |  | difrp |  |-  ( ( 1 e. RR /\ A e. RR ) -> ( 1 < A <-> ( A - 1 ) e. RR+ ) ) | 
						
							| 12 | 9 10 11 | sylancr |  |-  ( ( ph /\ 1 < A ) -> ( 1 < A <-> ( A - 1 ) e. RR+ ) ) | 
						
							| 13 | 8 12 | mpbid |  |-  ( ( ph /\ 1 < A ) -> ( A - 1 ) e. RR+ ) | 
						
							| 14 | 7 13 | rerpdivcld |  |-  ( ( ph /\ 1 < A ) -> ( ( 2 x. B ) / ( A - 1 ) ) e. RR ) | 
						
							| 15 |  | expnbnd |  |-  ( ( ( ( 2 x. B ) / ( A - 1 ) ) e. RR /\ A e. RR /\ 1 < A ) -> E. k e. NN ( ( 2 x. B ) / ( A - 1 ) ) < ( A ^ k ) ) | 
						
							| 16 | 14 10 8 15 | syl3anc |  |-  ( ( ph /\ 1 < A ) -> E. k e. NN ( ( 2 x. B ) / ( A - 1 ) ) < ( A ^ k ) ) | 
						
							| 17 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 18 |  | reexpcl |  |-  ( ( A e. RR /\ k e. NN0 ) -> ( A ^ k ) e. RR ) | 
						
							| 19 | 10 17 18 | syl2an |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ k ) e. RR ) | 
						
							| 20 | 14 | adantr |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( 2 x. B ) / ( A - 1 ) ) e. RR ) | 
						
							| 21 | 13 | rpred |  |-  ( ( ph /\ 1 < A ) -> ( A - 1 ) e. RR ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A - 1 ) e. RR ) | 
						
							| 23 |  | nnre |  |-  ( k e. NN -> k e. RR ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> k e. RR ) | 
						
							| 25 | 22 24 | remulcld |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( A - 1 ) x. k ) e. RR ) | 
						
							| 26 | 25 19 | remulcld |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) x. ( A ^ k ) ) e. RR ) | 
						
							| 27 | 1 | ad2antrr |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> A e. RR ) | 
						
							| 28 |  | 2nn |  |-  2 e. NN | 
						
							| 29 |  | simpr |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> k e. NN ) | 
						
							| 30 |  | nnmulcl |  |-  ( ( 2 e. NN /\ k e. NN ) -> ( 2 x. k ) e. NN ) | 
						
							| 31 | 28 29 30 | sylancr |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( 2 x. k ) e. NN ) | 
						
							| 32 | 31 | nnnn0d |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( 2 x. k ) e. NN0 ) | 
						
							| 33 | 27 32 | reexpcld |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ ( 2 x. k ) ) e. RR ) | 
						
							| 34 | 31 | nnred |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( 2 x. k ) e. RR ) | 
						
							| 35 | 2 | ad2antrr |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> B e. RR ) | 
						
							| 36 | 34 35 | remulcld |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( 2 x. k ) x. B ) e. RR ) | 
						
							| 37 |  | 0red |  |-  ( ( ph /\ 1 < A ) -> 0 e. RR ) | 
						
							| 38 | 9 | a1i |  |-  ( ( ph /\ 1 < A ) -> 1 e. RR ) | 
						
							| 39 |  | 0lt1 |  |-  0 < 1 | 
						
							| 40 | 39 | a1i |  |-  ( ( ph /\ 1 < A ) -> 0 < 1 ) | 
						
							| 41 | 37 38 10 40 8 | lttrd |  |-  ( ( ph /\ 1 < A ) -> 0 < A ) | 
						
							| 42 | 10 41 | elrpd |  |-  ( ( ph /\ 1 < A ) -> A e. RR+ ) | 
						
							| 43 |  | nnz |  |-  ( k e. NN -> k e. ZZ ) | 
						
							| 44 |  | rpexpcl |  |-  ( ( A e. RR+ /\ k e. ZZ ) -> ( A ^ k ) e. RR+ ) | 
						
							| 45 | 42 43 44 | syl2an |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ k ) e. RR+ ) | 
						
							| 46 |  | peano2re |  |-  ( ( ( A - 1 ) x. k ) e. RR -> ( ( ( A - 1 ) x. k ) + 1 ) e. RR ) | 
						
							| 47 | 25 46 | syl |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) + 1 ) e. RR ) | 
						
							| 48 | 25 | ltp1d |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( A - 1 ) x. k ) < ( ( ( A - 1 ) x. k ) + 1 ) ) | 
						
							| 49 | 17 | adantl |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> k e. NN0 ) | 
						
							| 50 | 42 | adantr |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> A e. RR+ ) | 
						
							| 51 | 50 | rpge0d |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> 0 <_ A ) | 
						
							| 52 |  | bernneq2 |  |-  ( ( A e. RR /\ k e. NN0 /\ 0 <_ A ) -> ( ( ( A - 1 ) x. k ) + 1 ) <_ ( A ^ k ) ) | 
						
							| 53 | 27 49 51 52 | syl3anc |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) + 1 ) <_ ( A ^ k ) ) | 
						
							| 54 | 25 47 19 48 53 | ltletrd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( A - 1 ) x. k ) < ( A ^ k ) ) | 
						
							| 55 | 25 19 45 54 | ltmul1dd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) x. ( A ^ k ) ) < ( ( A ^ k ) x. ( A ^ k ) ) ) | 
						
							| 56 | 24 | recnd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> k e. CC ) | 
						
							| 57 | 56 | 2timesd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( 2 x. k ) = ( k + k ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ ( 2 x. k ) ) = ( A ^ ( k + k ) ) ) | 
						
							| 59 | 27 | recnd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> A e. CC ) | 
						
							| 60 | 59 49 49 | expaddd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ ( k + k ) ) = ( ( A ^ k ) x. ( A ^ k ) ) ) | 
						
							| 61 | 58 60 | eqtrd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ ( 2 x. k ) ) = ( ( A ^ k ) x. ( A ^ k ) ) ) | 
						
							| 62 | 55 61 | breqtrrd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) x. ( A ^ k ) ) < ( A ^ ( 2 x. k ) ) ) | 
						
							| 63 |  | oveq2 |  |-  ( n = ( 2 x. k ) -> ( A ^ n ) = ( A ^ ( 2 x. k ) ) ) | 
						
							| 64 |  | oveq1 |  |-  ( n = ( 2 x. k ) -> ( n x. B ) = ( ( 2 x. k ) x. B ) ) | 
						
							| 65 | 63 64 | breq12d |  |-  ( n = ( 2 x. k ) -> ( ( A ^ n ) <_ ( n x. B ) <-> ( A ^ ( 2 x. k ) ) <_ ( ( 2 x. k ) x. B ) ) ) | 
						
							| 66 | 3 | ralrimiva |  |-  ( ph -> A. n e. NN ( A ^ n ) <_ ( n x. B ) ) | 
						
							| 67 | 66 | ad2antrr |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> A. n e. NN ( A ^ n ) <_ ( n x. B ) ) | 
						
							| 68 | 65 67 31 | rspcdva |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ ( 2 x. k ) ) <_ ( ( 2 x. k ) x. B ) ) | 
						
							| 69 | 26 33 36 62 68 | ltletrd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) x. ( A ^ k ) ) < ( ( 2 x. k ) x. B ) ) | 
						
							| 70 | 22 | recnd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A - 1 ) e. CC ) | 
						
							| 71 | 19 | recnd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ k ) e. CC ) | 
						
							| 72 | 70 71 56 | mul32d |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) x. k ) = ( ( ( A - 1 ) x. k ) x. ( A ^ k ) ) ) | 
						
							| 73 |  | 2cnd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> 2 e. CC ) | 
						
							| 74 | 35 | recnd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> B e. CC ) | 
						
							| 75 | 73 74 56 | mul32d |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( 2 x. B ) x. k ) = ( ( 2 x. k ) x. B ) ) | 
						
							| 76 | 69 72 75 | 3brtr4d |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) x. k ) < ( ( 2 x. B ) x. k ) ) | 
						
							| 77 | 22 19 | remulcld |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( A - 1 ) x. ( A ^ k ) ) e. RR ) | 
						
							| 78 | 7 | adantr |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( 2 x. B ) e. RR ) | 
						
							| 79 |  | nngt0 |  |-  ( k e. NN -> 0 < k ) | 
						
							| 80 | 79 | adantl |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> 0 < k ) | 
						
							| 81 |  | ltmul1 |  |-  ( ( ( ( A - 1 ) x. ( A ^ k ) ) e. RR /\ ( 2 x. B ) e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) < ( 2 x. B ) <-> ( ( ( A - 1 ) x. ( A ^ k ) ) x. k ) < ( ( 2 x. B ) x. k ) ) ) | 
						
							| 82 | 77 78 24 80 81 | syl112anc |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) < ( 2 x. B ) <-> ( ( ( A - 1 ) x. ( A ^ k ) ) x. k ) < ( ( 2 x. B ) x. k ) ) ) | 
						
							| 83 | 76 82 | mpbird |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( A - 1 ) x. ( A ^ k ) ) < ( 2 x. B ) ) | 
						
							| 84 | 13 | rpgt0d |  |-  ( ( ph /\ 1 < A ) -> 0 < ( A - 1 ) ) | 
						
							| 85 | 84 | adantr |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> 0 < ( A - 1 ) ) | 
						
							| 86 |  | ltmuldiv2 |  |-  ( ( ( A ^ k ) e. RR /\ ( 2 x. B ) e. RR /\ ( ( A - 1 ) e. RR /\ 0 < ( A - 1 ) ) ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) < ( 2 x. B ) <-> ( A ^ k ) < ( ( 2 x. B ) / ( A - 1 ) ) ) ) | 
						
							| 87 | 19 78 22 85 86 | syl112anc |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) < ( 2 x. B ) <-> ( A ^ k ) < ( ( 2 x. B ) / ( A - 1 ) ) ) ) | 
						
							| 88 | 83 87 | mpbid |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ k ) < ( ( 2 x. B ) / ( A - 1 ) ) ) | 
						
							| 89 | 19 20 88 | ltnsymd |  |-  ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> -. ( ( 2 x. B ) / ( A - 1 ) ) < ( A ^ k ) ) | 
						
							| 90 | 89 | nrexdv |  |-  ( ( ph /\ 1 < A ) -> -. E. k e. NN ( ( 2 x. B ) / ( A - 1 ) ) < ( A ^ k ) ) | 
						
							| 91 | 16 90 | pm2.65da |  |-  ( ph -> -. 1 < A ) | 
						
							| 92 |  | lenlt |  |-  ( ( A e. RR /\ 1 e. RR ) -> ( A <_ 1 <-> -. 1 < A ) ) | 
						
							| 93 | 1 9 92 | sylancl |  |-  ( ph -> ( A <_ 1 <-> -. 1 < A ) ) | 
						
							| 94 | 91 93 | mpbird |  |-  ( ph -> A <_ 1 ) |