| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q |  |-  Q = ( CCfld |`s QQ ) | 
						
							| 2 |  | qabsabv.a |  |-  A = ( AbsVal ` Q ) | 
						
							| 3 |  | padic.j |  |-  J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) | 
						
							| 4 |  | ostth.k |  |-  K = ( x e. QQ |-> if ( x = 0 , 0 , 1 ) ) | 
						
							| 5 |  | ostth.1 |  |-  ( ph -> F e. A ) | 
						
							| 6 |  | ostth2.2 |  |-  ( ph -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 7 |  | ostth2.3 |  |-  ( ph -> 1 < ( F ` N ) ) | 
						
							| 8 |  | ostth2.4 |  |-  R = ( ( log ` ( F ` N ) ) / ( log ` N ) ) | 
						
							| 9 |  | eluz2b2 |  |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) | 
						
							| 10 | 6 9 | sylib |  |-  ( ph -> ( N e. NN /\ 1 < N ) ) | 
						
							| 11 | 10 | simpld |  |-  ( ph -> N e. NN ) | 
						
							| 12 |  | nnq |  |-  ( N e. NN -> N e. QQ ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> N e. QQ ) | 
						
							| 14 | 1 | qrngbas |  |-  QQ = ( Base ` Q ) | 
						
							| 15 | 2 14 | abvcl |  |-  ( ( F e. A /\ N e. QQ ) -> ( F ` N ) e. RR ) | 
						
							| 16 | 5 13 15 | syl2anc |  |-  ( ph -> ( F ` N ) e. RR ) | 
						
							| 17 | 16 7 | rplogcld |  |-  ( ph -> ( log ` ( F ` N ) ) e. RR+ ) | 
						
							| 18 | 11 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 19 | 10 | simprd |  |-  ( ph -> 1 < N ) | 
						
							| 20 | 18 19 | rplogcld |  |-  ( ph -> ( log ` N ) e. RR+ ) | 
						
							| 21 | 17 20 | rpdivcld |  |-  ( ph -> ( ( log ` ( F ` N ) ) / ( log ` N ) ) e. RR+ ) | 
						
							| 22 | 8 21 | eqeltrid |  |-  ( ph -> R e. RR+ ) | 
						
							| 23 | 22 | rpred |  |-  ( ph -> R e. RR ) | 
						
							| 24 | 22 | rpgt0d |  |-  ( ph -> 0 < R ) | 
						
							| 25 | 11 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 26 | 1 2 | qabvle |  |-  ( ( F e. A /\ N e. NN0 ) -> ( F ` N ) <_ N ) | 
						
							| 27 | 5 25 26 | syl2anc |  |-  ( ph -> ( F ` N ) <_ N ) | 
						
							| 28 | 11 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 29 | 1 | qrng0 |  |-  0 = ( 0g ` Q ) | 
						
							| 30 | 2 14 29 | abvgt0 |  |-  ( ( F e. A /\ N e. QQ /\ N =/= 0 ) -> 0 < ( F ` N ) ) | 
						
							| 31 | 5 13 28 30 | syl3anc |  |-  ( ph -> 0 < ( F ` N ) ) | 
						
							| 32 | 16 31 | elrpd |  |-  ( ph -> ( F ` N ) e. RR+ ) | 
						
							| 33 | 32 | reeflogd |  |-  ( ph -> ( exp ` ( log ` ( F ` N ) ) ) = ( F ` N ) ) | 
						
							| 34 | 11 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 35 | 34 | reeflogd |  |-  ( ph -> ( exp ` ( log ` N ) ) = N ) | 
						
							| 36 | 27 33 35 | 3brtr4d |  |-  ( ph -> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( log ` N ) ) ) | 
						
							| 37 | 17 | rpred |  |-  ( ph -> ( log ` ( F ` N ) ) e. RR ) | 
						
							| 38 | 34 | relogcld |  |-  ( ph -> ( log ` N ) e. RR ) | 
						
							| 39 |  | efle |  |-  ( ( ( log ` ( F ` N ) ) e. RR /\ ( log ` N ) e. RR ) -> ( ( log ` ( F ` N ) ) <_ ( log ` N ) <-> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( log ` N ) ) ) ) | 
						
							| 40 | 37 38 39 | syl2anc |  |-  ( ph -> ( ( log ` ( F ` N ) ) <_ ( log ` N ) <-> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( log ` N ) ) ) ) | 
						
							| 41 | 36 40 | mpbird |  |-  ( ph -> ( log ` ( F ` N ) ) <_ ( log ` N ) ) | 
						
							| 42 | 20 | rpcnd |  |-  ( ph -> ( log ` N ) e. CC ) | 
						
							| 43 | 42 | mulridd |  |-  ( ph -> ( ( log ` N ) x. 1 ) = ( log ` N ) ) | 
						
							| 44 | 41 43 | breqtrrd |  |-  ( ph -> ( log ` ( F ` N ) ) <_ ( ( log ` N ) x. 1 ) ) | 
						
							| 45 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 46 | 37 45 20 | ledivmuld |  |-  ( ph -> ( ( ( log ` ( F ` N ) ) / ( log ` N ) ) <_ 1 <-> ( log ` ( F ` N ) ) <_ ( ( log ` N ) x. 1 ) ) ) | 
						
							| 47 | 44 46 | mpbird |  |-  ( ph -> ( ( log ` ( F ` N ) ) / ( log ` N ) ) <_ 1 ) | 
						
							| 48 | 8 47 | eqbrtrid |  |-  ( ph -> R <_ 1 ) | 
						
							| 49 |  | 0xr |  |-  0 e. RR* | 
						
							| 50 |  | 1re |  |-  1 e. RR | 
						
							| 51 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( R e. ( 0 (,] 1 ) <-> ( R e. RR /\ 0 < R /\ R <_ 1 ) ) ) | 
						
							| 52 | 49 50 51 | mp2an |  |-  ( R e. ( 0 (,] 1 ) <-> ( R e. RR /\ 0 < R /\ R <_ 1 ) ) | 
						
							| 53 | 23 24 48 52 | syl3anbrc |  |-  ( ph -> R e. ( 0 (,] 1 ) ) | 
						
							| 54 | 1 2 | qabsabv |  |-  ( abs |` QQ ) e. A | 
						
							| 55 |  | fvres |  |-  ( y e. QQ -> ( ( abs |` QQ ) ` y ) = ( abs ` y ) ) | 
						
							| 56 | 55 | oveq1d |  |-  ( y e. QQ -> ( ( ( abs |` QQ ) ` y ) ^c R ) = ( ( abs ` y ) ^c R ) ) | 
						
							| 57 | 56 | mpteq2ia |  |-  ( y e. QQ |-> ( ( ( abs |` QQ ) ` y ) ^c R ) ) = ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) | 
						
							| 58 | 57 | eqcomi |  |-  ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) = ( y e. QQ |-> ( ( ( abs |` QQ ) ` y ) ^c R ) ) | 
						
							| 59 | 2 14 58 | abvcxp |  |-  ( ( ( abs |` QQ ) e. A /\ R e. ( 0 (,] 1 ) ) -> ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) e. A ) | 
						
							| 60 | 54 53 59 | sylancr |  |-  ( ph -> ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) e. A ) | 
						
							| 61 |  | eluzelz |  |-  ( z e. ( ZZ>= ` 2 ) -> z e. ZZ ) | 
						
							| 62 |  | zq |  |-  ( z e. ZZ -> z e. QQ ) | 
						
							| 63 |  | fveq2 |  |-  ( y = z -> ( abs ` y ) = ( abs ` z ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( y = z -> ( ( abs ` y ) ^c R ) = ( ( abs ` z ) ^c R ) ) | 
						
							| 65 |  | eqid |  |-  ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) = ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) | 
						
							| 66 |  | ovex |  |-  ( ( abs ` z ) ^c R ) e. _V | 
						
							| 67 | 64 65 66 | fvmpt |  |-  ( z e. QQ -> ( ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ` z ) = ( ( abs ` z ) ^c R ) ) | 
						
							| 68 | 61 62 67 | 3syl |  |-  ( z e. ( ZZ>= ` 2 ) -> ( ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ` z ) = ( ( abs ` z ) ^c R ) ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ` z ) = ( ( abs ` z ) ^c R ) ) | 
						
							| 70 |  | simpr |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. ( ZZ>= ` 2 ) ) | 
						
							| 71 |  | eluz2b2 |  |-  ( z e. ( ZZ>= ` 2 ) <-> ( z e. NN /\ 1 < z ) ) | 
						
							| 72 | 70 71 | sylib |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( z e. NN /\ 1 < z ) ) | 
						
							| 73 | 72 | simpld |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. NN ) | 
						
							| 74 | 73 | nnred |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. RR ) | 
						
							| 75 | 73 | nnnn0d |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. NN0 ) | 
						
							| 76 | 75 | nn0ge0d |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 0 <_ z ) | 
						
							| 77 | 74 76 | absidd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( abs ` z ) = z ) | 
						
							| 78 | 77 | oveq1d |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( ( abs ` z ) ^c R ) = ( z ^c R ) ) | 
						
							| 79 | 74 | recnd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. CC ) | 
						
							| 80 | 73 | nnne0d |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z =/= 0 ) | 
						
							| 81 | 22 | rpcnd |  |-  ( ph -> R e. CC ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> R e. CC ) | 
						
							| 83 | 79 80 82 | cxpefd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( z ^c R ) = ( exp ` ( R x. ( log ` z ) ) ) ) | 
						
							| 84 | 5 | adantr |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> F e. A ) | 
						
							| 85 | 6 | adantr |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 86 | 7 | adantr |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 1 < ( F ` N ) ) | 
						
							| 87 |  | eqid |  |-  ( ( log ` ( F ` z ) ) / ( log ` z ) ) = ( ( log ` ( F ` z ) ) / ( log ` z ) ) | 
						
							| 88 |  | eqid |  |-  if ( ( F ` z ) <_ 1 , 1 , ( F ` z ) ) = if ( ( F ` z ) <_ 1 , 1 , ( F ` z ) ) | 
						
							| 89 |  | eqid |  |-  ( ( log ` N ) / ( log ` z ) ) = ( ( log ` N ) / ( log ` z ) ) | 
						
							| 90 | 1 2 3 4 84 85 86 8 70 87 88 89 | ostth2lem4 |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( 1 < ( F ` z ) /\ R <_ ( ( log ` ( F ` z ) ) / ( log ` z ) ) ) ) | 
						
							| 91 | 90 | simprd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> R <_ ( ( log ` ( F ` z ) ) / ( log ` z ) ) ) | 
						
							| 92 | 90 | simpld |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 1 < ( F ` z ) ) | 
						
							| 93 |  | eqid |  |-  if ( ( F ` N ) <_ 1 , 1 , ( F ` N ) ) = if ( ( F ` N ) <_ 1 , 1 , ( F ` N ) ) | 
						
							| 94 |  | eqid |  |-  ( ( log ` z ) / ( log ` N ) ) = ( ( log ` z ) / ( log ` N ) ) | 
						
							| 95 | 1 2 3 4 84 70 92 87 85 8 93 94 | ostth2lem4 |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( 1 < ( F ` N ) /\ ( ( log ` ( F ` z ) ) / ( log ` z ) ) <_ R ) ) | 
						
							| 96 | 95 | simprd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( ( log ` ( F ` z ) ) / ( log ` z ) ) <_ R ) | 
						
							| 97 | 23 | adantr |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> R e. RR ) | 
						
							| 98 | 61 | adantl |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. ZZ ) | 
						
							| 99 | 98 62 | syl |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. QQ ) | 
						
							| 100 | 2 14 | abvcl |  |-  ( ( F e. A /\ z e. QQ ) -> ( F ` z ) e. RR ) | 
						
							| 101 | 84 99 100 | syl2anc |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( F ` z ) e. RR ) | 
						
							| 102 | 2 14 29 | abvgt0 |  |-  ( ( F e. A /\ z e. QQ /\ z =/= 0 ) -> 0 < ( F ` z ) ) | 
						
							| 103 | 84 99 80 102 | syl3anc |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 0 < ( F ` z ) ) | 
						
							| 104 | 101 103 | elrpd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( F ` z ) e. RR+ ) | 
						
							| 105 | 104 | relogcld |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( log ` ( F ` z ) ) e. RR ) | 
						
							| 106 | 73 | nnrpd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. RR+ ) | 
						
							| 107 | 106 | relogcld |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( log ` z ) e. RR ) | 
						
							| 108 |  | ef0 |  |-  ( exp ` 0 ) = 1 | 
						
							| 109 | 72 | simprd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 1 < z ) | 
						
							| 110 | 106 | reeflogd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( exp ` ( log ` z ) ) = z ) | 
						
							| 111 | 109 110 | breqtrrd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 1 < ( exp ` ( log ` z ) ) ) | 
						
							| 112 | 108 111 | eqbrtrid |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( exp ` 0 ) < ( exp ` ( log ` z ) ) ) | 
						
							| 113 |  | 0re |  |-  0 e. RR | 
						
							| 114 |  | eflt |  |-  ( ( 0 e. RR /\ ( log ` z ) e. RR ) -> ( 0 < ( log ` z ) <-> ( exp ` 0 ) < ( exp ` ( log ` z ) ) ) ) | 
						
							| 115 | 113 107 114 | sylancr |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( 0 < ( log ` z ) <-> ( exp ` 0 ) < ( exp ` ( log ` z ) ) ) ) | 
						
							| 116 | 112 115 | mpbird |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 0 < ( log ` z ) ) | 
						
							| 117 | 116 | gt0ne0d |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( log ` z ) =/= 0 ) | 
						
							| 118 | 105 107 117 | redivcld |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( ( log ` ( F ` z ) ) / ( log ` z ) ) e. RR ) | 
						
							| 119 | 97 118 | letri3d |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( R = ( ( log ` ( F ` z ) ) / ( log ` z ) ) <-> ( R <_ ( ( log ` ( F ` z ) ) / ( log ` z ) ) /\ ( ( log ` ( F ` z ) ) / ( log ` z ) ) <_ R ) ) ) | 
						
							| 120 | 91 96 119 | mpbir2and |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> R = ( ( log ` ( F ` z ) ) / ( log ` z ) ) ) | 
						
							| 121 | 120 | oveq1d |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( R x. ( log ` z ) ) = ( ( ( log ` ( F ` z ) ) / ( log ` z ) ) x. ( log ` z ) ) ) | 
						
							| 122 | 105 | recnd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( log ` ( F ` z ) ) e. CC ) | 
						
							| 123 | 107 | recnd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( log ` z ) e. CC ) | 
						
							| 124 | 122 123 117 | divcan1d |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ( log ` ( F ` z ) ) / ( log ` z ) ) x. ( log ` z ) ) = ( log ` ( F ` z ) ) ) | 
						
							| 125 | 121 124 | eqtrd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( R x. ( log ` z ) ) = ( log ` ( F ` z ) ) ) | 
						
							| 126 | 125 | fveq2d |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( exp ` ( R x. ( log ` z ) ) ) = ( exp ` ( log ` ( F ` z ) ) ) ) | 
						
							| 127 | 104 | reeflogd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( exp ` ( log ` ( F ` z ) ) ) = ( F ` z ) ) | 
						
							| 128 | 83 126 127 | 3eqtrd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( z ^c R ) = ( F ` z ) ) | 
						
							| 129 | 69 78 128 | 3eqtrrd |  |-  ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( F ` z ) = ( ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ` z ) ) | 
						
							| 130 | 1 2 5 60 129 | ostthlem1 |  |-  ( ph -> F = ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ) | 
						
							| 131 |  | oveq2 |  |-  ( a = R -> ( ( abs ` y ) ^c a ) = ( ( abs ` y ) ^c R ) ) | 
						
							| 132 | 131 | mpteq2dv |  |-  ( a = R -> ( y e. QQ |-> ( ( abs ` y ) ^c a ) ) = ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ) | 
						
							| 133 | 132 | rspceeqv |  |-  ( ( R e. ( 0 (,] 1 ) /\ F = ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ) -> E. a e. ( 0 (,] 1 ) F = ( y e. QQ |-> ( ( abs ` y ) ^c a ) ) ) | 
						
							| 134 | 53 130 133 | syl2anc |  |-  ( ph -> E. a e. ( 0 (,] 1 ) F = ( y e. QQ |-> ( ( abs ` y ) ^c a ) ) ) |