Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
2 |
|
qabsabv.a |
|- A = ( AbsVal ` Q ) |
3 |
|
padic.j |
|- J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) |
4 |
|
ostth.k |
|- K = ( x e. QQ |-> if ( x = 0 , 0 , 1 ) ) |
5 |
|
ostth.1 |
|- ( ph -> F e. A ) |
6 |
|
ostth2.2 |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
7 |
|
ostth2.3 |
|- ( ph -> 1 < ( F ` N ) ) |
8 |
|
ostth2.4 |
|- R = ( ( log ` ( F ` N ) ) / ( log ` N ) ) |
9 |
|
eluz2b2 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) |
10 |
6 9
|
sylib |
|- ( ph -> ( N e. NN /\ 1 < N ) ) |
11 |
10
|
simpld |
|- ( ph -> N e. NN ) |
12 |
|
nnq |
|- ( N e. NN -> N e. QQ ) |
13 |
11 12
|
syl |
|- ( ph -> N e. QQ ) |
14 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
15 |
2 14
|
abvcl |
|- ( ( F e. A /\ N e. QQ ) -> ( F ` N ) e. RR ) |
16 |
5 13 15
|
syl2anc |
|- ( ph -> ( F ` N ) e. RR ) |
17 |
16 7
|
rplogcld |
|- ( ph -> ( log ` ( F ` N ) ) e. RR+ ) |
18 |
11
|
nnred |
|- ( ph -> N e. RR ) |
19 |
10
|
simprd |
|- ( ph -> 1 < N ) |
20 |
18 19
|
rplogcld |
|- ( ph -> ( log ` N ) e. RR+ ) |
21 |
17 20
|
rpdivcld |
|- ( ph -> ( ( log ` ( F ` N ) ) / ( log ` N ) ) e. RR+ ) |
22 |
8 21
|
eqeltrid |
|- ( ph -> R e. RR+ ) |
23 |
22
|
rpred |
|- ( ph -> R e. RR ) |
24 |
22
|
rpgt0d |
|- ( ph -> 0 < R ) |
25 |
11
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
26 |
1 2
|
qabvle |
|- ( ( F e. A /\ N e. NN0 ) -> ( F ` N ) <_ N ) |
27 |
5 25 26
|
syl2anc |
|- ( ph -> ( F ` N ) <_ N ) |
28 |
11
|
nnne0d |
|- ( ph -> N =/= 0 ) |
29 |
1
|
qrng0 |
|- 0 = ( 0g ` Q ) |
30 |
2 14 29
|
abvgt0 |
|- ( ( F e. A /\ N e. QQ /\ N =/= 0 ) -> 0 < ( F ` N ) ) |
31 |
5 13 28 30
|
syl3anc |
|- ( ph -> 0 < ( F ` N ) ) |
32 |
16 31
|
elrpd |
|- ( ph -> ( F ` N ) e. RR+ ) |
33 |
32
|
reeflogd |
|- ( ph -> ( exp ` ( log ` ( F ` N ) ) ) = ( F ` N ) ) |
34 |
11
|
nnrpd |
|- ( ph -> N e. RR+ ) |
35 |
34
|
reeflogd |
|- ( ph -> ( exp ` ( log ` N ) ) = N ) |
36 |
27 33 35
|
3brtr4d |
|- ( ph -> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( log ` N ) ) ) |
37 |
17
|
rpred |
|- ( ph -> ( log ` ( F ` N ) ) e. RR ) |
38 |
34
|
relogcld |
|- ( ph -> ( log ` N ) e. RR ) |
39 |
|
efle |
|- ( ( ( log ` ( F ` N ) ) e. RR /\ ( log ` N ) e. RR ) -> ( ( log ` ( F ` N ) ) <_ ( log ` N ) <-> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( log ` N ) ) ) ) |
40 |
37 38 39
|
syl2anc |
|- ( ph -> ( ( log ` ( F ` N ) ) <_ ( log ` N ) <-> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( log ` N ) ) ) ) |
41 |
36 40
|
mpbird |
|- ( ph -> ( log ` ( F ` N ) ) <_ ( log ` N ) ) |
42 |
20
|
rpcnd |
|- ( ph -> ( log ` N ) e. CC ) |
43 |
42
|
mulid1d |
|- ( ph -> ( ( log ` N ) x. 1 ) = ( log ` N ) ) |
44 |
41 43
|
breqtrrd |
|- ( ph -> ( log ` ( F ` N ) ) <_ ( ( log ` N ) x. 1 ) ) |
45 |
|
1red |
|- ( ph -> 1 e. RR ) |
46 |
37 45 20
|
ledivmuld |
|- ( ph -> ( ( ( log ` ( F ` N ) ) / ( log ` N ) ) <_ 1 <-> ( log ` ( F ` N ) ) <_ ( ( log ` N ) x. 1 ) ) ) |
47 |
44 46
|
mpbird |
|- ( ph -> ( ( log ` ( F ` N ) ) / ( log ` N ) ) <_ 1 ) |
48 |
8 47
|
eqbrtrid |
|- ( ph -> R <_ 1 ) |
49 |
|
0xr |
|- 0 e. RR* |
50 |
|
1re |
|- 1 e. RR |
51 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( R e. ( 0 (,] 1 ) <-> ( R e. RR /\ 0 < R /\ R <_ 1 ) ) ) |
52 |
49 50 51
|
mp2an |
|- ( R e. ( 0 (,] 1 ) <-> ( R e. RR /\ 0 < R /\ R <_ 1 ) ) |
53 |
23 24 48 52
|
syl3anbrc |
|- ( ph -> R e. ( 0 (,] 1 ) ) |
54 |
1 2
|
qabsabv |
|- ( abs |` QQ ) e. A |
55 |
|
fvres |
|- ( y e. QQ -> ( ( abs |` QQ ) ` y ) = ( abs ` y ) ) |
56 |
55
|
oveq1d |
|- ( y e. QQ -> ( ( ( abs |` QQ ) ` y ) ^c R ) = ( ( abs ` y ) ^c R ) ) |
57 |
56
|
mpteq2ia |
|- ( y e. QQ |-> ( ( ( abs |` QQ ) ` y ) ^c R ) ) = ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) |
58 |
57
|
eqcomi |
|- ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) = ( y e. QQ |-> ( ( ( abs |` QQ ) ` y ) ^c R ) ) |
59 |
2 14 58
|
abvcxp |
|- ( ( ( abs |` QQ ) e. A /\ R e. ( 0 (,] 1 ) ) -> ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) e. A ) |
60 |
54 53 59
|
sylancr |
|- ( ph -> ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) e. A ) |
61 |
|
eluzelz |
|- ( z e. ( ZZ>= ` 2 ) -> z e. ZZ ) |
62 |
|
zq |
|- ( z e. ZZ -> z e. QQ ) |
63 |
|
fveq2 |
|- ( y = z -> ( abs ` y ) = ( abs ` z ) ) |
64 |
63
|
oveq1d |
|- ( y = z -> ( ( abs ` y ) ^c R ) = ( ( abs ` z ) ^c R ) ) |
65 |
|
eqid |
|- ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) = ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) |
66 |
|
ovex |
|- ( ( abs ` z ) ^c R ) e. _V |
67 |
64 65 66
|
fvmpt |
|- ( z e. QQ -> ( ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ` z ) = ( ( abs ` z ) ^c R ) ) |
68 |
61 62 67
|
3syl |
|- ( z e. ( ZZ>= ` 2 ) -> ( ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ` z ) = ( ( abs ` z ) ^c R ) ) |
69 |
68
|
adantl |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ` z ) = ( ( abs ` z ) ^c R ) ) |
70 |
|
simpr |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. ( ZZ>= ` 2 ) ) |
71 |
|
eluz2b2 |
|- ( z e. ( ZZ>= ` 2 ) <-> ( z e. NN /\ 1 < z ) ) |
72 |
70 71
|
sylib |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( z e. NN /\ 1 < z ) ) |
73 |
72
|
simpld |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. NN ) |
74 |
73
|
nnred |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. RR ) |
75 |
73
|
nnnn0d |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. NN0 ) |
76 |
75
|
nn0ge0d |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 0 <_ z ) |
77 |
74 76
|
absidd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( abs ` z ) = z ) |
78 |
77
|
oveq1d |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( ( abs ` z ) ^c R ) = ( z ^c R ) ) |
79 |
74
|
recnd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. CC ) |
80 |
73
|
nnne0d |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z =/= 0 ) |
81 |
22
|
rpcnd |
|- ( ph -> R e. CC ) |
82 |
81
|
adantr |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> R e. CC ) |
83 |
79 80 82
|
cxpefd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( z ^c R ) = ( exp ` ( R x. ( log ` z ) ) ) ) |
84 |
5
|
adantr |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> F e. A ) |
85 |
6
|
adantr |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> N e. ( ZZ>= ` 2 ) ) |
86 |
7
|
adantr |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 1 < ( F ` N ) ) |
87 |
|
eqid |
|- ( ( log ` ( F ` z ) ) / ( log ` z ) ) = ( ( log ` ( F ` z ) ) / ( log ` z ) ) |
88 |
|
eqid |
|- if ( ( F ` z ) <_ 1 , 1 , ( F ` z ) ) = if ( ( F ` z ) <_ 1 , 1 , ( F ` z ) ) |
89 |
|
eqid |
|- ( ( log ` N ) / ( log ` z ) ) = ( ( log ` N ) / ( log ` z ) ) |
90 |
1 2 3 4 84 85 86 8 70 87 88 89
|
ostth2lem4 |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( 1 < ( F ` z ) /\ R <_ ( ( log ` ( F ` z ) ) / ( log ` z ) ) ) ) |
91 |
90
|
simprd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> R <_ ( ( log ` ( F ` z ) ) / ( log ` z ) ) ) |
92 |
90
|
simpld |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 1 < ( F ` z ) ) |
93 |
|
eqid |
|- if ( ( F ` N ) <_ 1 , 1 , ( F ` N ) ) = if ( ( F ` N ) <_ 1 , 1 , ( F ` N ) ) |
94 |
|
eqid |
|- ( ( log ` z ) / ( log ` N ) ) = ( ( log ` z ) / ( log ` N ) ) |
95 |
1 2 3 4 84 70 92 87 85 8 93 94
|
ostth2lem4 |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( 1 < ( F ` N ) /\ ( ( log ` ( F ` z ) ) / ( log ` z ) ) <_ R ) ) |
96 |
95
|
simprd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( ( log ` ( F ` z ) ) / ( log ` z ) ) <_ R ) |
97 |
23
|
adantr |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> R e. RR ) |
98 |
61
|
adantl |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. ZZ ) |
99 |
98 62
|
syl |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. QQ ) |
100 |
2 14
|
abvcl |
|- ( ( F e. A /\ z e. QQ ) -> ( F ` z ) e. RR ) |
101 |
84 99 100
|
syl2anc |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( F ` z ) e. RR ) |
102 |
2 14 29
|
abvgt0 |
|- ( ( F e. A /\ z e. QQ /\ z =/= 0 ) -> 0 < ( F ` z ) ) |
103 |
84 99 80 102
|
syl3anc |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 0 < ( F ` z ) ) |
104 |
101 103
|
elrpd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( F ` z ) e. RR+ ) |
105 |
104
|
relogcld |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( log ` ( F ` z ) ) e. RR ) |
106 |
73
|
nnrpd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> z e. RR+ ) |
107 |
106
|
relogcld |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( log ` z ) e. RR ) |
108 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
109 |
72
|
simprd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 1 < z ) |
110 |
106
|
reeflogd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( exp ` ( log ` z ) ) = z ) |
111 |
109 110
|
breqtrrd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 1 < ( exp ` ( log ` z ) ) ) |
112 |
108 111
|
eqbrtrid |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( exp ` 0 ) < ( exp ` ( log ` z ) ) ) |
113 |
|
0re |
|- 0 e. RR |
114 |
|
eflt |
|- ( ( 0 e. RR /\ ( log ` z ) e. RR ) -> ( 0 < ( log ` z ) <-> ( exp ` 0 ) < ( exp ` ( log ` z ) ) ) ) |
115 |
113 107 114
|
sylancr |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( 0 < ( log ` z ) <-> ( exp ` 0 ) < ( exp ` ( log ` z ) ) ) ) |
116 |
112 115
|
mpbird |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> 0 < ( log ` z ) ) |
117 |
116
|
gt0ne0d |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( log ` z ) =/= 0 ) |
118 |
105 107 117
|
redivcld |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( ( log ` ( F ` z ) ) / ( log ` z ) ) e. RR ) |
119 |
97 118
|
letri3d |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( R = ( ( log ` ( F ` z ) ) / ( log ` z ) ) <-> ( R <_ ( ( log ` ( F ` z ) ) / ( log ` z ) ) /\ ( ( log ` ( F ` z ) ) / ( log ` z ) ) <_ R ) ) ) |
120 |
91 96 119
|
mpbir2and |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> R = ( ( log ` ( F ` z ) ) / ( log ` z ) ) ) |
121 |
120
|
oveq1d |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( R x. ( log ` z ) ) = ( ( ( log ` ( F ` z ) ) / ( log ` z ) ) x. ( log ` z ) ) ) |
122 |
105
|
recnd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( log ` ( F ` z ) ) e. CC ) |
123 |
107
|
recnd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( log ` z ) e. CC ) |
124 |
122 123 117
|
divcan1d |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ( log ` ( F ` z ) ) / ( log ` z ) ) x. ( log ` z ) ) = ( log ` ( F ` z ) ) ) |
125 |
121 124
|
eqtrd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( R x. ( log ` z ) ) = ( log ` ( F ` z ) ) ) |
126 |
125
|
fveq2d |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( exp ` ( R x. ( log ` z ) ) ) = ( exp ` ( log ` ( F ` z ) ) ) ) |
127 |
104
|
reeflogd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( exp ` ( log ` ( F ` z ) ) ) = ( F ` z ) ) |
128 |
83 126 127
|
3eqtrd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( z ^c R ) = ( F ` z ) ) |
129 |
69 78 128
|
3eqtrrd |
|- ( ( ph /\ z e. ( ZZ>= ` 2 ) ) -> ( F ` z ) = ( ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ` z ) ) |
130 |
1 2 5 60 129
|
ostthlem1 |
|- ( ph -> F = ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ) |
131 |
|
oveq2 |
|- ( a = R -> ( ( abs ` y ) ^c a ) = ( ( abs ` y ) ^c R ) ) |
132 |
131
|
mpteq2dv |
|- ( a = R -> ( y e. QQ |-> ( ( abs ` y ) ^c a ) ) = ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ) |
133 |
132
|
rspceeqv |
|- ( ( R e. ( 0 (,] 1 ) /\ F = ( y e. QQ |-> ( ( abs ` y ) ^c R ) ) ) -> E. a e. ( 0 (,] 1 ) F = ( y e. QQ |-> ( ( abs ` y ) ^c a ) ) ) |
134 |
53 130 133
|
syl2anc |
|- ( ph -> E. a e. ( 0 (,] 1 ) F = ( y e. QQ |-> ( ( abs ` y ) ^c a ) ) ) |