| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | qabsabv.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑄 ) | 
						
							| 3 |  | padic.j | ⊢ 𝐽  =  ( 𝑞  ∈  ℙ  ↦  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) ) ) | 
						
							| 4 |  | ostth.k | ⊢ 𝐾  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  1 ) ) | 
						
							| 5 |  | ostth.1 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 6 |  | ostth2.2 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 7 |  | ostth2.3 | ⊢ ( 𝜑  →  1  <  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 8 |  | ostth2.4 | ⊢ 𝑅  =  ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  /  ( log ‘ 𝑁 ) ) | 
						
							| 9 |  | eluz2b2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑁  ∈  ℕ  ∧  1  <  𝑁 ) ) | 
						
							| 10 | 6 9 | sylib | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∧  1  <  𝑁 ) ) | 
						
							| 11 | 10 | simpld | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 12 |  | nnq | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℚ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℚ ) | 
						
							| 14 | 1 | qrngbas | ⊢ ℚ  =  ( Base ‘ 𝑄 ) | 
						
							| 15 | 2 14 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑁  ∈  ℚ )  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 16 | 5 13 15 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 17 | 16 7 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ∈  ℝ+ ) | 
						
							| 18 | 11 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 19 | 10 | simprd | ⊢ ( 𝜑  →  1  <  𝑁 ) | 
						
							| 20 | 18 19 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℝ+ ) | 
						
							| 21 | 17 20 | rpdivcld | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  /  ( log ‘ 𝑁 ) )  ∈  ℝ+ ) | 
						
							| 22 | 8 21 | eqeltrid | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 23 | 22 | rpred | ⊢ ( 𝜑  →  𝑅  ∈  ℝ ) | 
						
							| 24 | 22 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝑅 ) | 
						
							| 25 | 11 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 26 | 1 2 | qabvle | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑁 )  ≤  𝑁 ) | 
						
							| 27 | 5 25 26 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ≤  𝑁 ) | 
						
							| 28 | 11 | nnne0d | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 29 | 1 | qrng0 | ⊢ 0  =  ( 0g ‘ 𝑄 ) | 
						
							| 30 | 2 14 29 | abvgt0 | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑁  ∈  ℚ  ∧  𝑁  ≠  0 )  →  0  <  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 31 | 5 13 28 30 | syl3anc | ⊢ ( 𝜑  →  0  <  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 32 | 16 31 | elrpd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ+ ) | 
						
							| 33 | 32 | reeflogd | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) )  =  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 34 | 11 | nnrpd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ+ ) | 
						
							| 35 | 34 | reeflogd | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ 𝑁 ) )  =  𝑁 ) | 
						
							| 36 | 27 33 35 | 3brtr4d | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) )  ≤  ( exp ‘ ( log ‘ 𝑁 ) ) ) | 
						
							| 37 | 17 | rpred | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 38 | 34 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 39 |  | efle | ⊢ ( ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ∈  ℝ  ∧  ( log ‘ 𝑁 )  ∈  ℝ )  →  ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( log ‘ 𝑁 )  ↔  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) )  ≤  ( exp ‘ ( log ‘ 𝑁 ) ) ) ) | 
						
							| 40 | 37 38 39 | syl2anc | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( log ‘ 𝑁 )  ↔  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) )  ≤  ( exp ‘ ( log ‘ 𝑁 ) ) ) ) | 
						
							| 41 | 36 40 | mpbird | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( log ‘ 𝑁 ) ) | 
						
							| 42 | 20 | rpcnd | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 43 | 42 | mulridd | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  ·  1 )  =  ( log ‘ 𝑁 ) ) | 
						
							| 44 | 41 43 | breqtrrd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( ( log ‘ 𝑁 )  ·  1 ) ) | 
						
							| 45 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 46 | 37 45 20 | ledivmuld | ⊢ ( 𝜑  →  ( ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  /  ( log ‘ 𝑁 ) )  ≤  1  ↔  ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( ( log ‘ 𝑁 )  ·  1 ) ) ) | 
						
							| 47 | 44 46 | mpbird | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  /  ( log ‘ 𝑁 ) )  ≤  1 ) | 
						
							| 48 | 8 47 | eqbrtrid | ⊢ ( 𝜑  →  𝑅  ≤  1 ) | 
						
							| 49 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 50 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 51 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ )  →  ( 𝑅  ∈  ( 0 (,] 1 )  ↔  ( 𝑅  ∈  ℝ  ∧  0  <  𝑅  ∧  𝑅  ≤  1 ) ) ) | 
						
							| 52 | 49 50 51 | mp2an | ⊢ ( 𝑅  ∈  ( 0 (,] 1 )  ↔  ( 𝑅  ∈  ℝ  ∧  0  <  𝑅  ∧  𝑅  ≤  1 ) ) | 
						
							| 53 | 23 24 48 52 | syl3anbrc | ⊢ ( 𝜑  →  𝑅  ∈  ( 0 (,] 1 ) ) | 
						
							| 54 | 1 2 | qabsabv | ⊢ ( abs  ↾  ℚ )  ∈  𝐴 | 
						
							| 55 |  | fvres | ⊢ ( 𝑦  ∈  ℚ  →  ( ( abs  ↾  ℚ ) ‘ 𝑦 )  =  ( abs ‘ 𝑦 ) ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( 𝑦  ∈  ℚ  →  ( ( ( abs  ↾  ℚ ) ‘ 𝑦 ) ↑𝑐 𝑅 )  =  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) | 
						
							| 57 | 56 | mpteq2ia | ⊢ ( 𝑦  ∈  ℚ  ↦  ( ( ( abs  ↾  ℚ ) ‘ 𝑦 ) ↑𝑐 𝑅 ) )  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) | 
						
							| 58 | 57 | eqcomi | ⊢ ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) )  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( abs  ↾  ℚ ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) | 
						
							| 59 | 2 14 58 | abvcxp | ⊢ ( ( ( abs  ↾  ℚ )  ∈  𝐴  ∧  𝑅  ∈  ( 0 (,] 1 ) )  →  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) )  ∈  𝐴 ) | 
						
							| 60 | 54 53 59 | sylancr | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) )  ∈  𝐴 ) | 
						
							| 61 |  | eluzelz | ⊢ ( 𝑧  ∈  ( ℤ≥ ‘ 2 )  →  𝑧  ∈  ℤ ) | 
						
							| 62 |  | zq | ⊢ ( 𝑧  ∈  ℤ  →  𝑧  ∈  ℚ ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( abs ‘ 𝑦 )  =  ( abs ‘ 𝑧 ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 )  =  ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) ) | 
						
							| 65 |  | eqid | ⊢ ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) )  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) | 
						
							| 66 |  | ovex | ⊢ ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 )  ∈  V | 
						
							| 67 | 64 65 66 | fvmpt | ⊢ ( 𝑧  ∈  ℚ  →  ( ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 )  =  ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) ) | 
						
							| 68 | 61 62 67 | 3syl | ⊢ ( 𝑧  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 )  =  ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 )  =  ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) ) | 
						
							| 70 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑧  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 71 |  | eluz2b2 | ⊢ ( 𝑧  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑧  ∈  ℕ  ∧  1  <  𝑧 ) ) | 
						
							| 72 | 70 71 | sylib | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑧  ∈  ℕ  ∧  1  <  𝑧 ) ) | 
						
							| 73 | 72 | simpld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑧  ∈  ℕ ) | 
						
							| 74 | 73 | nnred | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑧  ∈  ℝ ) | 
						
							| 75 | 73 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑧  ∈  ℕ0 ) | 
						
							| 76 | 75 | nn0ge0d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  0  ≤  𝑧 ) | 
						
							| 77 | 74 76 | absidd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( abs ‘ 𝑧 )  =  𝑧 ) | 
						
							| 78 | 77 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 )  =  ( 𝑧 ↑𝑐 𝑅 ) ) | 
						
							| 79 | 74 | recnd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑧  ∈  ℂ ) | 
						
							| 80 | 73 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑧  ≠  0 ) | 
						
							| 81 | 22 | rpcnd | ⊢ ( 𝜑  →  𝑅  ∈  ℂ ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑅  ∈  ℂ ) | 
						
							| 83 | 79 80 82 | cxpefd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑧 ↑𝑐 𝑅 )  =  ( exp ‘ ( 𝑅  ·  ( log ‘ 𝑧 ) ) ) ) | 
						
							| 84 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 85 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 86 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  1  <  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 87 |  | eqid | ⊢ ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) )  =  ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) ) | 
						
							| 88 |  | eqid | ⊢ if ( ( 𝐹 ‘ 𝑧 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑧 ) )  =  if ( ( 𝐹 ‘ 𝑧 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 89 |  | eqid | ⊢ ( ( log ‘ 𝑁 )  /  ( log ‘ 𝑧 ) )  =  ( ( log ‘ 𝑁 )  /  ( log ‘ 𝑧 ) ) | 
						
							| 90 | 1 2 3 4 84 85 86 8 70 87 88 89 | ostth2lem4 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 1  <  ( 𝐹 ‘ 𝑧 )  ∧  𝑅  ≤  ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) ) ) ) | 
						
							| 91 | 90 | simprd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑅  ≤  ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) ) ) | 
						
							| 92 | 90 | simpld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  1  <  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 93 |  | eqid | ⊢ if ( ( 𝐹 ‘ 𝑁 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑁 ) )  =  if ( ( 𝐹 ‘ 𝑁 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 94 |  | eqid | ⊢ ( ( log ‘ 𝑧 )  /  ( log ‘ 𝑁 ) )  =  ( ( log ‘ 𝑧 )  /  ( log ‘ 𝑁 ) ) | 
						
							| 95 | 1 2 3 4 84 70 92 87 85 8 93 94 | ostth2lem4 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 1  <  ( 𝐹 ‘ 𝑁 )  ∧  ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) )  ≤  𝑅 ) ) | 
						
							| 96 | 95 | simprd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) )  ≤  𝑅 ) | 
						
							| 97 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑅  ∈  ℝ ) | 
						
							| 98 | 61 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑧  ∈  ℤ ) | 
						
							| 99 | 98 62 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑧  ∈  ℚ ) | 
						
							| 100 | 2 14 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑧  ∈  ℚ )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 101 | 84 99 100 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 102 | 2 14 29 | abvgt0 | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑧  ∈  ℚ  ∧  𝑧  ≠  0 )  →  0  <  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 103 | 84 99 80 102 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  0  <  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 104 | 101 103 | elrpd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℝ+ ) | 
						
							| 105 | 104 | relogcld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( log ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 106 | 73 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑧  ∈  ℝ+ ) | 
						
							| 107 | 106 | relogcld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( log ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 108 |  | ef0 | ⊢ ( exp ‘ 0 )  =  1 | 
						
							| 109 | 72 | simprd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  1  <  𝑧 ) | 
						
							| 110 | 106 | reeflogd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( exp ‘ ( log ‘ 𝑧 ) )  =  𝑧 ) | 
						
							| 111 | 109 110 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  1  <  ( exp ‘ ( log ‘ 𝑧 ) ) ) | 
						
							| 112 | 108 111 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( exp ‘ 0 )  <  ( exp ‘ ( log ‘ 𝑧 ) ) ) | 
						
							| 113 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 114 |  | eflt | ⊢ ( ( 0  ∈  ℝ  ∧  ( log ‘ 𝑧 )  ∈  ℝ )  →  ( 0  <  ( log ‘ 𝑧 )  ↔  ( exp ‘ 0 )  <  ( exp ‘ ( log ‘ 𝑧 ) ) ) ) | 
						
							| 115 | 113 107 114 | sylancr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 0  <  ( log ‘ 𝑧 )  ↔  ( exp ‘ 0 )  <  ( exp ‘ ( log ‘ 𝑧 ) ) ) ) | 
						
							| 116 | 112 115 | mpbird | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  0  <  ( log ‘ 𝑧 ) ) | 
						
							| 117 | 116 | gt0ne0d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( log ‘ 𝑧 )  ≠  0 ) | 
						
							| 118 | 105 107 117 | redivcld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 119 | 97 118 | letri3d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑅  =  ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) )  ↔  ( 𝑅  ≤  ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) )  ∧  ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) )  ≤  𝑅 ) ) ) | 
						
							| 120 | 91 96 119 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑅  =  ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) ) ) | 
						
							| 121 | 120 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑅  ·  ( log ‘ 𝑧 ) )  =  ( ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) )  ·  ( log ‘ 𝑧 ) ) ) | 
						
							| 122 | 105 | recnd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( log ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ℂ ) | 
						
							| 123 | 107 | recnd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( log ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 124 | 122 123 117 | divcan1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ( log ‘ ( 𝐹 ‘ 𝑧 ) )  /  ( log ‘ 𝑧 ) )  ·  ( log ‘ 𝑧 ) )  =  ( log ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 125 | 121 124 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑅  ·  ( log ‘ 𝑧 ) )  =  ( log ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 126 | 125 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( exp ‘ ( 𝑅  ·  ( log ‘ 𝑧 ) ) )  =  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 127 | 104 | reeflogd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑧 ) ) )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 128 | 83 126 127 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑧 ↑𝑐 𝑅 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 129 | 69 78 128 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 ) ) | 
						
							| 130 | 1 2 5 60 129 | ostthlem1 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) | 
						
							| 131 |  | oveq2 | ⊢ ( 𝑎  =  𝑅  →  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 )  =  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) | 
						
							| 132 | 131 | mpteq2dv | ⊢ ( 𝑎  =  𝑅  →  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) | 
						
							| 133 | 132 | rspceeqv | ⊢ ( ( 𝑅  ∈  ( 0 (,] 1 )  ∧  𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) )  →  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) | 
						
							| 134 | 53 130 133 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |