Metamath Proof Explorer


Theorem ostth2

Description: - Lemma for ostth : regular case. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q 𝑄 = ( ℂflds ℚ )
qabsabv.a 𝐴 = ( AbsVal ‘ 𝑄 )
padic.j 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) )
ostth.k 𝐾 = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , 1 ) )
ostth.1 ( 𝜑𝐹𝐴 )
ostth2.2 ( 𝜑𝑁 ∈ ( ℤ ‘ 2 ) )
ostth2.3 ( 𝜑 → 1 < ( 𝐹𝑁 ) )
ostth2.4 𝑅 = ( ( log ‘ ( 𝐹𝑁 ) ) / ( log ‘ 𝑁 ) )
Assertion ostth2 ( 𝜑 → ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) )

Proof

Step Hyp Ref Expression
1 qrng.q 𝑄 = ( ℂflds ℚ )
2 qabsabv.a 𝐴 = ( AbsVal ‘ 𝑄 )
3 padic.j 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) )
4 ostth.k 𝐾 = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , 1 ) )
5 ostth.1 ( 𝜑𝐹𝐴 )
6 ostth2.2 ( 𝜑𝑁 ∈ ( ℤ ‘ 2 ) )
7 ostth2.3 ( 𝜑 → 1 < ( 𝐹𝑁 ) )
8 ostth2.4 𝑅 = ( ( log ‘ ( 𝐹𝑁 ) ) / ( log ‘ 𝑁 ) )
9 eluz2b2 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) )
10 6 9 sylib ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) )
11 10 simpld ( 𝜑𝑁 ∈ ℕ )
12 nnq ( 𝑁 ∈ ℕ → 𝑁 ∈ ℚ )
13 11 12 syl ( 𝜑𝑁 ∈ ℚ )
14 1 qrngbas ℚ = ( Base ‘ 𝑄 )
15 2 14 abvcl ( ( 𝐹𝐴𝑁 ∈ ℚ ) → ( 𝐹𝑁 ) ∈ ℝ )
16 5 13 15 syl2anc ( 𝜑 → ( 𝐹𝑁 ) ∈ ℝ )
17 16 7 rplogcld ( 𝜑 → ( log ‘ ( 𝐹𝑁 ) ) ∈ ℝ+ )
18 11 nnred ( 𝜑𝑁 ∈ ℝ )
19 10 simprd ( 𝜑 → 1 < 𝑁 )
20 18 19 rplogcld ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ+ )
21 17 20 rpdivcld ( 𝜑 → ( ( log ‘ ( 𝐹𝑁 ) ) / ( log ‘ 𝑁 ) ) ∈ ℝ+ )
22 8 21 eqeltrid ( 𝜑𝑅 ∈ ℝ+ )
23 22 rpred ( 𝜑𝑅 ∈ ℝ )
24 22 rpgt0d ( 𝜑 → 0 < 𝑅 )
25 11 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
26 1 2 qabvle ( ( 𝐹𝐴𝑁 ∈ ℕ0 ) → ( 𝐹𝑁 ) ≤ 𝑁 )
27 5 25 26 syl2anc ( 𝜑 → ( 𝐹𝑁 ) ≤ 𝑁 )
28 11 nnne0d ( 𝜑𝑁 ≠ 0 )
29 1 qrng0 0 = ( 0g𝑄 )
30 2 14 29 abvgt0 ( ( 𝐹𝐴𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) → 0 < ( 𝐹𝑁 ) )
31 5 13 28 30 syl3anc ( 𝜑 → 0 < ( 𝐹𝑁 ) )
32 16 31 elrpd ( 𝜑 → ( 𝐹𝑁 ) ∈ ℝ+ )
33 32 reeflogd ( 𝜑 → ( exp ‘ ( log ‘ ( 𝐹𝑁 ) ) ) = ( 𝐹𝑁 ) )
34 11 nnrpd ( 𝜑𝑁 ∈ ℝ+ )
35 34 reeflogd ( 𝜑 → ( exp ‘ ( log ‘ 𝑁 ) ) = 𝑁 )
36 27 33 35 3brtr4d ( 𝜑 → ( exp ‘ ( log ‘ ( 𝐹𝑁 ) ) ) ≤ ( exp ‘ ( log ‘ 𝑁 ) ) )
37 17 rpred ( 𝜑 → ( log ‘ ( 𝐹𝑁 ) ) ∈ ℝ )
38 34 relogcld ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ )
39 efle ( ( ( log ‘ ( 𝐹𝑁 ) ) ∈ ℝ ∧ ( log ‘ 𝑁 ) ∈ ℝ ) → ( ( log ‘ ( 𝐹𝑁 ) ) ≤ ( log ‘ 𝑁 ) ↔ ( exp ‘ ( log ‘ ( 𝐹𝑁 ) ) ) ≤ ( exp ‘ ( log ‘ 𝑁 ) ) ) )
40 37 38 39 syl2anc ( 𝜑 → ( ( log ‘ ( 𝐹𝑁 ) ) ≤ ( log ‘ 𝑁 ) ↔ ( exp ‘ ( log ‘ ( 𝐹𝑁 ) ) ) ≤ ( exp ‘ ( log ‘ 𝑁 ) ) ) )
41 36 40 mpbird ( 𝜑 → ( log ‘ ( 𝐹𝑁 ) ) ≤ ( log ‘ 𝑁 ) )
42 20 rpcnd ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℂ )
43 42 mulid1d ( 𝜑 → ( ( log ‘ 𝑁 ) · 1 ) = ( log ‘ 𝑁 ) )
44 41 43 breqtrrd ( 𝜑 → ( log ‘ ( 𝐹𝑁 ) ) ≤ ( ( log ‘ 𝑁 ) · 1 ) )
45 1red ( 𝜑 → 1 ∈ ℝ )
46 37 45 20 ledivmuld ( 𝜑 → ( ( ( log ‘ ( 𝐹𝑁 ) ) / ( log ‘ 𝑁 ) ) ≤ 1 ↔ ( log ‘ ( 𝐹𝑁 ) ) ≤ ( ( log ‘ 𝑁 ) · 1 ) ) )
47 44 46 mpbird ( 𝜑 → ( ( log ‘ ( 𝐹𝑁 ) ) / ( log ‘ 𝑁 ) ) ≤ 1 )
48 8 47 eqbrtrid ( 𝜑𝑅 ≤ 1 )
49 0xr 0 ∈ ℝ*
50 1re 1 ∈ ℝ
51 elioc2 ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝑅 ∈ ( 0 (,] 1 ) ↔ ( 𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1 ) ) )
52 49 50 51 mp2an ( 𝑅 ∈ ( 0 (,] 1 ) ↔ ( 𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1 ) )
53 23 24 48 52 syl3anbrc ( 𝜑𝑅 ∈ ( 0 (,] 1 ) )
54 1 2 qabsabv ( abs ↾ ℚ ) ∈ 𝐴
55 fvres ( 𝑦 ∈ ℚ → ( ( abs ↾ ℚ ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) )
56 55 oveq1d ( 𝑦 ∈ ℚ → ( ( ( abs ↾ ℚ ) ‘ 𝑦 ) ↑𝑐 𝑅 ) = ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) )
57 56 mpteq2ia ( 𝑦 ∈ ℚ ↦ ( ( ( abs ↾ ℚ ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) )
58 57 eqcomi ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( ( abs ↾ ℚ ) ‘ 𝑦 ) ↑𝑐 𝑅 ) )
59 2 14 58 abvcxp ( ( ( abs ↾ ℚ ) ∈ 𝐴𝑅 ∈ ( 0 (,] 1 ) ) → ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ∈ 𝐴 )
60 54 53 59 sylancr ( 𝜑 → ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ∈ 𝐴 )
61 eluzelz ( 𝑧 ∈ ( ℤ ‘ 2 ) → 𝑧 ∈ ℤ )
62 zq ( 𝑧 ∈ ℤ → 𝑧 ∈ ℚ )
63 fveq2 ( 𝑦 = 𝑧 → ( abs ‘ 𝑦 ) = ( abs ‘ 𝑧 ) )
64 63 oveq1d ( 𝑦 = 𝑧 → ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) = ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) )
65 eqid ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) )
66 ovex ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) ∈ V
67 64 65 66 fvmpt ( 𝑧 ∈ ℚ → ( ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 ) = ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) )
68 61 62 67 3syl ( 𝑧 ∈ ( ℤ ‘ 2 ) → ( ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 ) = ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) )
69 68 adantl ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 ) = ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) )
70 simpr ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑧 ∈ ( ℤ ‘ 2 ) )
71 eluz2b2 ( 𝑧 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑧 ∈ ℕ ∧ 1 < 𝑧 ) )
72 70 71 sylib ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 𝑧 ∈ ℕ ∧ 1 < 𝑧 ) )
73 72 simpld ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑧 ∈ ℕ )
74 73 nnred ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑧 ∈ ℝ )
75 73 nnnn0d ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑧 ∈ ℕ0 )
76 75 nn0ge0d ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 0 ≤ 𝑧 )
77 74 76 absidd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( abs ‘ 𝑧 ) = 𝑧 )
78 77 oveq1d ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) = ( 𝑧𝑐 𝑅 ) )
79 74 recnd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑧 ∈ ℂ )
80 73 nnne0d ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑧 ≠ 0 )
81 22 rpcnd ( 𝜑𝑅 ∈ ℂ )
82 81 adantr ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑅 ∈ ℂ )
83 79 80 82 cxpefd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 𝑧𝑐 𝑅 ) = ( exp ‘ ( 𝑅 · ( log ‘ 𝑧 ) ) ) )
84 5 adantr ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝐹𝐴 )
85 6 adantr ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑁 ∈ ( ℤ ‘ 2 ) )
86 7 adantr ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 1 < ( 𝐹𝑁 ) )
87 eqid ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) = ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) )
88 eqid if ( ( 𝐹𝑧 ) ≤ 1 , 1 , ( 𝐹𝑧 ) ) = if ( ( 𝐹𝑧 ) ≤ 1 , 1 , ( 𝐹𝑧 ) )
89 eqid ( ( log ‘ 𝑁 ) / ( log ‘ 𝑧 ) ) = ( ( log ‘ 𝑁 ) / ( log ‘ 𝑧 ) )
90 1 2 3 4 84 85 86 8 70 87 88 89 ostth2lem4 ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 1 < ( 𝐹𝑧 ) ∧ 𝑅 ≤ ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) ) )
91 90 simprd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑅 ≤ ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) )
92 90 simpld ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 1 < ( 𝐹𝑧 ) )
93 eqid if ( ( 𝐹𝑁 ) ≤ 1 , 1 , ( 𝐹𝑁 ) ) = if ( ( 𝐹𝑁 ) ≤ 1 , 1 , ( 𝐹𝑁 ) )
94 eqid ( ( log ‘ 𝑧 ) / ( log ‘ 𝑁 ) ) = ( ( log ‘ 𝑧 ) / ( log ‘ 𝑁 ) )
95 1 2 3 4 84 70 92 87 85 8 93 94 ostth2lem4 ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 1 < ( 𝐹𝑁 ) ∧ ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) ≤ 𝑅 ) )
96 95 simprd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) ≤ 𝑅 )
97 23 adantr ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑅 ∈ ℝ )
98 61 adantl ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑧 ∈ ℤ )
99 98 62 syl ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑧 ∈ ℚ )
100 2 14 abvcl ( ( 𝐹𝐴𝑧 ∈ ℚ ) → ( 𝐹𝑧 ) ∈ ℝ )
101 84 99 100 syl2anc ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 𝐹𝑧 ) ∈ ℝ )
102 2 14 29 abvgt0 ( ( 𝐹𝐴𝑧 ∈ ℚ ∧ 𝑧 ≠ 0 ) → 0 < ( 𝐹𝑧 ) )
103 84 99 80 102 syl3anc ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 0 < ( 𝐹𝑧 ) )
104 101 103 elrpd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 𝐹𝑧 ) ∈ ℝ+ )
105 104 relogcld ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( log ‘ ( 𝐹𝑧 ) ) ∈ ℝ )
106 73 nnrpd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑧 ∈ ℝ+ )
107 106 relogcld ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( log ‘ 𝑧 ) ∈ ℝ )
108 ef0 ( exp ‘ 0 ) = 1
109 72 simprd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 1 < 𝑧 )
110 106 reeflogd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( exp ‘ ( log ‘ 𝑧 ) ) = 𝑧 )
111 109 110 breqtrrd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 1 < ( exp ‘ ( log ‘ 𝑧 ) ) )
112 108 111 eqbrtrid ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( exp ‘ 0 ) < ( exp ‘ ( log ‘ 𝑧 ) ) )
113 0re 0 ∈ ℝ
114 eflt ( ( 0 ∈ ℝ ∧ ( log ‘ 𝑧 ) ∈ ℝ ) → ( 0 < ( log ‘ 𝑧 ) ↔ ( exp ‘ 0 ) < ( exp ‘ ( log ‘ 𝑧 ) ) ) )
115 113 107 114 sylancr ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 0 < ( log ‘ 𝑧 ) ↔ ( exp ‘ 0 ) < ( exp ‘ ( log ‘ 𝑧 ) ) ) )
116 112 115 mpbird ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 0 < ( log ‘ 𝑧 ) )
117 116 gt0ne0d ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( log ‘ 𝑧 ) ≠ 0 )
118 105 107 117 redivcld ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) ∈ ℝ )
119 97 118 letri3d ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 𝑅 = ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) ↔ ( 𝑅 ≤ ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) ∧ ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) ≤ 𝑅 ) ) )
120 91 96 119 mpbir2and ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → 𝑅 = ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) )
121 120 oveq1d ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 𝑅 · ( log ‘ 𝑧 ) ) = ( ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) · ( log ‘ 𝑧 ) ) )
122 105 recnd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( log ‘ ( 𝐹𝑧 ) ) ∈ ℂ )
123 107 recnd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( log ‘ 𝑧 ) ∈ ℂ )
124 122 123 117 divcan1d ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( ( ( log ‘ ( 𝐹𝑧 ) ) / ( log ‘ 𝑧 ) ) · ( log ‘ 𝑧 ) ) = ( log ‘ ( 𝐹𝑧 ) ) )
125 121 124 eqtrd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 𝑅 · ( log ‘ 𝑧 ) ) = ( log ‘ ( 𝐹𝑧 ) ) )
126 125 fveq2d ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( exp ‘ ( 𝑅 · ( log ‘ 𝑧 ) ) ) = ( exp ‘ ( log ‘ ( 𝐹𝑧 ) ) ) )
127 104 reeflogd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( exp ‘ ( log ‘ ( 𝐹𝑧 ) ) ) = ( 𝐹𝑧 ) )
128 83 126 127 3eqtrd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 𝑧𝑐 𝑅 ) = ( 𝐹𝑧 ) )
129 69 78 128 3eqtrrd ( ( 𝜑𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 𝐹𝑧 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 ) )
130 1 2 5 60 129 ostthlem1 ( 𝜑𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) )
131 oveq2 ( 𝑎 = 𝑅 → ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) = ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) )
132 131 mpteq2dv ( 𝑎 = 𝑅 → ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) )
133 132 rspceeqv ( ( 𝑅 ∈ ( 0 (,] 1 ) ∧ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) → ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) )
134 53 130 133 syl2anc ( 𝜑 → ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) )