Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
2 |
|
qabsabv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) |
3 |
|
padic.j |
⊢ 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) ) |
4 |
|
ostth.k |
⊢ 𝐾 = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , 1 ) ) |
5 |
|
ostth.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
6 |
|
ostth2.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
7 |
|
ostth2.3 |
⊢ ( 𝜑 → 1 < ( 𝐹 ‘ 𝑁 ) ) |
8 |
|
ostth2.4 |
⊢ 𝑅 = ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) / ( log ‘ 𝑁 ) ) |
9 |
|
ostth2.5 |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
10 |
|
ostth2.6 |
⊢ 𝑆 = ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) / ( log ‘ 𝑀 ) ) |
11 |
|
ostth2.7 |
⊢ 𝑇 = if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) |
12 |
|
ostth2.8 |
⊢ 𝑈 = ( ( log ‘ 𝑁 ) / ( log ‘ 𝑀 ) ) |
13 |
|
1re |
⊢ 1 ∈ ℝ |
14 |
|
eluz2b2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
15 |
6 14
|
sylib |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
17 |
|
nnq |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℚ ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℚ ) |
19 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
20 |
2 19
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℚ ) → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
21 |
5 18 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
22 |
|
ltnle |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) → ( 1 < ( 𝐹 ‘ 𝑁 ) ↔ ¬ ( 𝐹 ‘ 𝑁 ) ≤ 1 ) ) |
23 |
13 21 22
|
sylancr |
⊢ ( 𝜑 → ( 1 < ( 𝐹 ‘ 𝑁 ) ↔ ¬ ( 𝐹 ‘ 𝑁 ) ≤ 1 ) ) |
24 |
7 23
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑁 ) ≤ 1 ) |
25 |
|
eluz2b2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) ) |
26 |
9 25
|
sylib |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) ) |
27 |
26
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
28 |
|
nnq |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℚ ) |
29 |
27 28
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℚ ) |
30 |
2 19
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ) → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
31 |
5 29 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
32 |
|
ifcl |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ∈ ℝ ) |
33 |
13 31 32
|
sylancr |
⊢ ( 𝜑 → if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ∈ ℝ ) |
34 |
11 33
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
35 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
36 |
13
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
37 |
|
0lt1 |
⊢ 0 < 1 |
38 |
37
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
39 |
|
max2 |
⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ 1 ∈ ℝ ) → 1 ≤ if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ) |
40 |
31 13 39
|
sylancl |
⊢ ( 𝜑 → 1 ≤ if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ) |
41 |
40 11
|
breqtrrdi |
⊢ ( 𝜑 → 1 ≤ 𝑇 ) |
42 |
35 36 34 38 41
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑇 ) |
43 |
34 42
|
elrpd |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
44 |
16
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
45 |
44
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ ) |
46 |
27
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
47 |
26
|
simprd |
⊢ ( 𝜑 → 1 < 𝑀 ) |
48 |
46 47
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝑀 ) ∈ ℝ+ ) |
49 |
45 48
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) / ( log ‘ 𝑀 ) ) ∈ ℝ ) |
50 |
12 49
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
51 |
43 50
|
rpcxpcld |
⊢ ( 𝜑 → ( 𝑇 ↑𝑐 𝑈 ) ∈ ℝ+ ) |
52 |
21 51
|
rerpdivcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) / ( 𝑇 ↑𝑐 𝑈 ) ) ∈ ℝ ) |
53 |
46 34
|
remulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑇 ) ∈ ℝ ) |
54 |
|
peano2re |
⊢ ( 𝑈 ∈ ℝ → ( 𝑈 + 1 ) ∈ ℝ ) |
55 |
50 54
|
syl |
⊢ ( 𝜑 → ( 𝑈 + 1 ) ∈ ℝ ) |
56 |
53 55
|
remulcld |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ∈ ℝ ) |
57 |
1 2 3 4 5 6 7 8 9 10 11 12
|
ostth2lem3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑁 ) / ( 𝑇 ↑𝑐 𝑈 ) ) ↑ 𝑛 ) ≤ ( 𝑛 · ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ) ) |
58 |
52 56 57
|
ostth2lem1 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) / ( 𝑇 ↑𝑐 𝑈 ) ) ≤ 1 ) |
59 |
21 36 51
|
ledivmuld |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑁 ) / ( 𝑇 ↑𝑐 𝑈 ) ) ≤ 1 ↔ ( 𝐹 ‘ 𝑁 ) ≤ ( ( 𝑇 ↑𝑐 𝑈 ) · 1 ) ) ) |
60 |
58 59
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( ( 𝑇 ↑𝑐 𝑈 ) · 1 ) ) |
61 |
51
|
rpcnd |
⊢ ( 𝜑 → ( 𝑇 ↑𝑐 𝑈 ) ∈ ℂ ) |
62 |
61
|
mulid1d |
⊢ ( 𝜑 → ( ( 𝑇 ↑𝑐 𝑈 ) · 1 ) = ( 𝑇 ↑𝑐 𝑈 ) ) |
63 |
60 62
|
breqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑇 ↑𝑐 𝑈 ) ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑀 ) ≤ 1 ) → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑇 ↑𝑐 𝑈 ) ) |
65 |
|
iftrue |
⊢ ( ( 𝐹 ‘ 𝑀 ) ≤ 1 → if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) = 1 ) |
66 |
11 65
|
eqtrid |
⊢ ( ( 𝐹 ‘ 𝑀 ) ≤ 1 → 𝑇 = 1 ) |
67 |
66
|
oveq1d |
⊢ ( ( 𝐹 ‘ 𝑀 ) ≤ 1 → ( 𝑇 ↑𝑐 𝑈 ) = ( 1 ↑𝑐 𝑈 ) ) |
68 |
50
|
recnd |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
69 |
68
|
1cxpd |
⊢ ( 𝜑 → ( 1 ↑𝑐 𝑈 ) = 1 ) |
70 |
67 69
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑀 ) ≤ 1 ) → ( 𝑇 ↑𝑐 𝑈 ) = 1 ) |
71 |
64 70
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑀 ) ≤ 1 ) → ( 𝐹 ‘ 𝑁 ) ≤ 1 ) |
72 |
24 71
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑀 ) ≤ 1 ) |
73 |
|
ltnle |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) → ( 1 < ( 𝐹 ‘ 𝑀 ) ↔ ¬ ( 𝐹 ‘ 𝑀 ) ≤ 1 ) ) |
74 |
13 31 73
|
sylancr |
⊢ ( 𝜑 → ( 1 < ( 𝐹 ‘ 𝑀 ) ↔ ¬ ( 𝐹 ‘ 𝑀 ) ≤ 1 ) ) |
75 |
72 74
|
mpbird |
⊢ ( 𝜑 → 1 < ( 𝐹 ‘ 𝑀 ) ) |
76 |
35 36 21 38 7
|
lttrd |
⊢ ( 𝜑 → 0 < ( 𝐹 ‘ 𝑁 ) ) |
77 |
21 76
|
elrpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ+ ) |
78 |
77
|
reeflogd |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ) = ( 𝐹 ‘ 𝑁 ) ) |
79 |
|
iffalse |
⊢ ( ¬ ( 𝐹 ‘ 𝑀 ) ≤ 1 → if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) = ( 𝐹 ‘ 𝑀 ) ) |
80 |
11 79
|
eqtrid |
⊢ ( ¬ ( 𝐹 ‘ 𝑀 ) ≤ 1 → 𝑇 = ( 𝐹 ‘ 𝑀 ) ) |
81 |
72 80
|
syl |
⊢ ( 𝜑 → 𝑇 = ( 𝐹 ‘ 𝑀 ) ) |
82 |
81
|
oveq1d |
⊢ ( 𝜑 → ( 𝑇 ↑𝑐 𝑈 ) = ( ( 𝐹 ‘ 𝑀 ) ↑𝑐 𝑈 ) ) |
83 |
31
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℂ ) |
84 |
35 36 31 38 75
|
lttrd |
⊢ ( 𝜑 → 0 < ( 𝐹 ‘ 𝑀 ) ) |
85 |
31 84
|
elrpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ+ ) |
86 |
85
|
rpne0d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ≠ 0 ) |
87 |
83 86 68
|
cxpefd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) ↑𝑐 𝑈 ) = ( exp ‘ ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) ) |
88 |
82 87
|
eqtr2d |
⊢ ( 𝜑 → ( exp ‘ ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) = ( 𝑇 ↑𝑐 𝑈 ) ) |
89 |
63 78 88
|
3brtr4d |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ) ≤ ( exp ‘ ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) ) |
90 |
77
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℝ ) |
91 |
85
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ∈ ℝ ) |
92 |
50 91
|
remulcld |
⊢ ( 𝜑 → ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ∈ ℝ ) |
93 |
|
efle |
⊢ ( ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℝ ∧ ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ∈ ℝ ) → ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ↔ ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ) ≤ ( exp ‘ ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) ) ) |
94 |
90 92 93
|
syl2anc |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ↔ ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ) ≤ ( exp ‘ ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) ) ) |
95 |
89 94
|
mpbird |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) |
96 |
45
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℂ ) |
97 |
91
|
recnd |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ∈ ℂ ) |
98 |
48
|
rpcnd |
⊢ ( 𝜑 → ( log ‘ 𝑀 ) ∈ ℂ ) |
99 |
48
|
rpne0d |
⊢ ( 𝜑 → ( log ‘ 𝑀 ) ≠ 0 ) |
100 |
96 97 98 99
|
div12d |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) / ( log ‘ 𝑀 ) ) ) = ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) · ( ( log ‘ 𝑁 ) / ( log ‘ 𝑀 ) ) ) ) |
101 |
12
|
oveq2i |
⊢ ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) · 𝑈 ) = ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) · ( ( log ‘ 𝑁 ) / ( log ‘ 𝑀 ) ) ) |
102 |
100 101
|
eqtr4di |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) / ( log ‘ 𝑀 ) ) ) = ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) · 𝑈 ) ) |
103 |
97 68
|
mulcomd |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) · 𝑈 ) = ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) |
104 |
102 103
|
eqtrd |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) / ( log ‘ 𝑀 ) ) ) = ( 𝑈 · ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) |
105 |
95 104
|
breqtrrd |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( ( log ‘ 𝑁 ) · ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) / ( log ‘ 𝑀 ) ) ) ) |
106 |
91 48
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) / ( log ‘ 𝑀 ) ) ∈ ℝ ) |
107 |
16
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
108 |
15
|
simprd |
⊢ ( 𝜑 → 1 < 𝑁 ) |
109 |
107 108
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ+ ) |
110 |
90 106 109
|
ledivmuld |
⊢ ( 𝜑 → ( ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) / ( log ‘ 𝑁 ) ) ≤ ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) / ( log ‘ 𝑀 ) ) ↔ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( ( log ‘ 𝑁 ) · ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) / ( log ‘ 𝑀 ) ) ) ) ) |
111 |
105 110
|
mpbird |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) / ( log ‘ 𝑁 ) ) ≤ ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) / ( log ‘ 𝑀 ) ) ) |
112 |
111 8 10
|
3brtr4g |
⊢ ( 𝜑 → 𝑅 ≤ 𝑆 ) |
113 |
75 112
|
jca |
⊢ ( 𝜑 → ( 1 < ( 𝐹 ‘ 𝑀 ) ∧ 𝑅 ≤ 𝑆 ) ) |