| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | qabsabv.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑄 ) | 
						
							| 3 |  | padic.j | ⊢ 𝐽  =  ( 𝑞  ∈  ℙ  ↦  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) ) ) | 
						
							| 4 |  | ostth.k | ⊢ 𝐾  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  1 ) ) | 
						
							| 5 |  | ostth.1 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 6 |  | ostth2.2 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 7 |  | ostth2.3 | ⊢ ( 𝜑  →  1  <  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 8 |  | ostth2.4 | ⊢ 𝑅  =  ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  /  ( log ‘ 𝑁 ) ) | 
						
							| 9 |  | ostth2.5 | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 10 |  | ostth2.6 | ⊢ 𝑆  =  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  /  ( log ‘ 𝑀 ) ) | 
						
							| 11 |  | ostth2.7 | ⊢ 𝑇  =  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 12 |  | ostth2.8 | ⊢ 𝑈  =  ( ( log ‘ 𝑁 )  /  ( log ‘ 𝑀 ) ) | 
						
							| 13 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 14 |  | eluz2b2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑁  ∈  ℕ  ∧  1  <  𝑁 ) ) | 
						
							| 15 | 6 14 | sylib | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∧  1  <  𝑁 ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 17 |  | nnq | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℚ ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℚ ) | 
						
							| 19 | 1 | qrngbas | ⊢ ℚ  =  ( Base ‘ 𝑄 ) | 
						
							| 20 | 2 19 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑁  ∈  ℚ )  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 21 | 5 18 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 22 |  | ltnle | ⊢ ( ( 1  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑁 )  ∈  ℝ )  →  ( 1  <  ( 𝐹 ‘ 𝑁 )  ↔  ¬  ( 𝐹 ‘ 𝑁 )  ≤  1 ) ) | 
						
							| 23 | 13 21 22 | sylancr | ⊢ ( 𝜑  →  ( 1  <  ( 𝐹 ‘ 𝑁 )  ↔  ¬  ( 𝐹 ‘ 𝑁 )  ≤  1 ) ) | 
						
							| 24 | 7 23 | mpbid | ⊢ ( 𝜑  →  ¬  ( 𝐹 ‘ 𝑁 )  ≤  1 ) | 
						
							| 25 |  | eluz2b2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑀  ∈  ℕ  ∧  1  <  𝑀 ) ) | 
						
							| 26 | 9 25 | sylib | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ  ∧  1  <  𝑀 ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 28 |  | nnq | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℚ ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℚ ) | 
						
							| 30 | 2 19 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑀  ∈  ℚ )  →  ( 𝐹 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 31 | 5 29 30 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 32 |  | ifcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑀 )  ∈  ℝ )  →  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 33 | 13 31 32 | sylancr | ⊢ ( 𝜑  →  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 34 | 11 33 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 35 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 36 | 13 | a1i | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 37 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 38 | 37 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 39 |  | max2 | ⊢ ( ( ( 𝐹 ‘ 𝑀 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  1  ≤  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 40 | 31 13 39 | sylancl | ⊢ ( 𝜑  →  1  ≤  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 41 | 40 11 | breqtrrdi | ⊢ ( 𝜑  →  1  ≤  𝑇 ) | 
						
							| 42 | 35 36 34 38 41 | ltletrd | ⊢ ( 𝜑  →  0  <  𝑇 ) | 
						
							| 43 | 34 42 | elrpd | ⊢ ( 𝜑  →  𝑇  ∈  ℝ+ ) | 
						
							| 44 | 16 | nnrpd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ+ ) | 
						
							| 45 | 44 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 46 | 27 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 47 | 26 | simprd | ⊢ ( 𝜑  →  1  <  𝑀 ) | 
						
							| 48 | 46 47 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑀 )  ∈  ℝ+ ) | 
						
							| 49 | 45 48 | rerpdivcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  /  ( log ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 50 | 12 49 | eqeltrid | ⊢ ( 𝜑  →  𝑈  ∈  ℝ ) | 
						
							| 51 | 43 50 | rpcxpcld | ⊢ ( 𝜑  →  ( 𝑇 ↑𝑐 𝑈 )  ∈  ℝ+ ) | 
						
							| 52 | 21 51 | rerpdivcld | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑁 )  /  ( 𝑇 ↑𝑐 𝑈 ) )  ∈  ℝ ) | 
						
							| 53 | 46 34 | remulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑇 )  ∈  ℝ ) | 
						
							| 54 |  | peano2re | ⊢ ( 𝑈  ∈  ℝ  →  ( 𝑈  +  1 )  ∈  ℝ ) | 
						
							| 55 | 50 54 | syl | ⊢ ( 𝜑  →  ( 𝑈  +  1 )  ∈  ℝ ) | 
						
							| 56 | 53 55 | remulcld | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) )  ∈  ℝ ) | 
						
							| 57 | 1 2 3 4 5 6 7 8 9 10 11 12 | ostth2lem3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑁 )  /  ( 𝑇 ↑𝑐 𝑈 ) ) ↑ 𝑛 )  ≤  ( 𝑛  ·  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) ) ) ) | 
						
							| 58 | 52 56 57 | ostth2lem1 | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑁 )  /  ( 𝑇 ↑𝑐 𝑈 ) )  ≤  1 ) | 
						
							| 59 | 21 36 51 | ledivmuld | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ 𝑁 )  /  ( 𝑇 ↑𝑐 𝑈 ) )  ≤  1  ↔  ( 𝐹 ‘ 𝑁 )  ≤  ( ( 𝑇 ↑𝑐 𝑈 )  ·  1 ) ) ) | 
						
							| 60 | 58 59 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ≤  ( ( 𝑇 ↑𝑐 𝑈 )  ·  1 ) ) | 
						
							| 61 | 51 | rpcnd | ⊢ ( 𝜑  →  ( 𝑇 ↑𝑐 𝑈 )  ∈  ℂ ) | 
						
							| 62 | 61 | mulridd | ⊢ ( 𝜑  →  ( ( 𝑇 ↑𝑐 𝑈 )  ·  1 )  =  ( 𝑇 ↑𝑐 𝑈 ) ) | 
						
							| 63 | 60 62 | breqtrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ≤  ( 𝑇 ↑𝑐 𝑈 ) ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑀 )  ≤  1 )  →  ( 𝐹 ‘ 𝑁 )  ≤  ( 𝑇 ↑𝑐 𝑈 ) ) | 
						
							| 65 |  | iftrue | ⊢ ( ( 𝐹 ‘ 𝑀 )  ≤  1  →  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) )  =  1 ) | 
						
							| 66 | 11 65 | eqtrid | ⊢ ( ( 𝐹 ‘ 𝑀 )  ≤  1  →  𝑇  =  1 ) | 
						
							| 67 | 66 | oveq1d | ⊢ ( ( 𝐹 ‘ 𝑀 )  ≤  1  →  ( 𝑇 ↑𝑐 𝑈 )  =  ( 1 ↑𝑐 𝑈 ) ) | 
						
							| 68 | 50 | recnd | ⊢ ( 𝜑  →  𝑈  ∈  ℂ ) | 
						
							| 69 | 68 | 1cxpd | ⊢ ( 𝜑  →  ( 1 ↑𝑐 𝑈 )  =  1 ) | 
						
							| 70 | 67 69 | sylan9eqr | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑀 )  ≤  1 )  →  ( 𝑇 ↑𝑐 𝑈 )  =  1 ) | 
						
							| 71 | 64 70 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑀 )  ≤  1 )  →  ( 𝐹 ‘ 𝑁 )  ≤  1 ) | 
						
							| 72 | 24 71 | mtand | ⊢ ( 𝜑  →  ¬  ( 𝐹 ‘ 𝑀 )  ≤  1 ) | 
						
							| 73 |  | ltnle | ⊢ ( ( 1  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑀 )  ∈  ℝ )  →  ( 1  <  ( 𝐹 ‘ 𝑀 )  ↔  ¬  ( 𝐹 ‘ 𝑀 )  ≤  1 ) ) | 
						
							| 74 | 13 31 73 | sylancr | ⊢ ( 𝜑  →  ( 1  <  ( 𝐹 ‘ 𝑀 )  ↔  ¬  ( 𝐹 ‘ 𝑀 )  ≤  1 ) ) | 
						
							| 75 | 72 74 | mpbird | ⊢ ( 𝜑  →  1  <  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 76 | 35 36 21 38 7 | lttrd | ⊢ ( 𝜑  →  0  <  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 77 | 21 76 | elrpd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ+ ) | 
						
							| 78 | 77 | reeflogd | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) )  =  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 79 |  | iffalse | ⊢ ( ¬  ( 𝐹 ‘ 𝑀 )  ≤  1  →  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 80 | 11 79 | eqtrid | ⊢ ( ¬  ( 𝐹 ‘ 𝑀 )  ≤  1  →  𝑇  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 81 | 72 80 | syl | ⊢ ( 𝜑  →  𝑇  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 82 | 81 | oveq1d | ⊢ ( 𝜑  →  ( 𝑇 ↑𝑐 𝑈 )  =  ( ( 𝐹 ‘ 𝑀 ) ↑𝑐 𝑈 ) ) | 
						
							| 83 | 31 | recnd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 84 | 35 36 31 38 75 | lttrd | ⊢ ( 𝜑  →  0  <  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 85 | 31 84 | elrpd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ∈  ℝ+ ) | 
						
							| 86 | 85 | rpne0d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ≠  0 ) | 
						
							| 87 | 83 86 68 | cxpefd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑀 ) ↑𝑐 𝑈 )  =  ( exp ‘ ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) ) | 
						
							| 88 | 82 87 | eqtr2d | ⊢ ( 𝜑  →  ( exp ‘ ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) )  =  ( 𝑇 ↑𝑐 𝑈 ) ) | 
						
							| 89 | 63 78 88 | 3brtr4d | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) )  ≤  ( exp ‘ ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) ) | 
						
							| 90 | 77 | relogcld | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 91 | 85 | relogcld | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 92 | 50 91 | remulcld | ⊢ ( 𝜑  →  ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) )  ∈  ℝ ) | 
						
							| 93 |  | efle | ⊢ ( ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ∈  ℝ  ∧  ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) )  ∈  ℝ )  →  ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) )  ↔  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) )  ≤  ( exp ‘ ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) ) ) | 
						
							| 94 | 90 92 93 | syl2anc | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) )  ↔  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) )  ≤  ( exp ‘ ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) ) ) | 
						
							| 95 | 89 94 | mpbird | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) | 
						
							| 96 | 45 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 97 | 91 | recnd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑀 ) )  ∈  ℂ ) | 
						
							| 98 | 48 | rpcnd | ⊢ ( 𝜑  →  ( log ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 99 | 48 | rpne0d | ⊢ ( 𝜑  →  ( log ‘ 𝑀 )  ≠  0 ) | 
						
							| 100 | 96 97 98 99 | div12d | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  ·  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  /  ( log ‘ 𝑀 ) ) )  =  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  ·  ( ( log ‘ 𝑁 )  /  ( log ‘ 𝑀 ) ) ) ) | 
						
							| 101 | 12 | oveq2i | ⊢ ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  ·  𝑈 )  =  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  ·  ( ( log ‘ 𝑁 )  /  ( log ‘ 𝑀 ) ) ) | 
						
							| 102 | 100 101 | eqtr4di | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  ·  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  /  ( log ‘ 𝑀 ) ) )  =  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  ·  𝑈 ) ) | 
						
							| 103 | 97 68 | mulcomd | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  ·  𝑈 )  =  ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) | 
						
							| 104 | 102 103 | eqtrd | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  ·  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  /  ( log ‘ 𝑀 ) ) )  =  ( 𝑈  ·  ( log ‘ ( 𝐹 ‘ 𝑀 ) ) ) ) | 
						
							| 105 | 95 104 | breqtrrd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( ( log ‘ 𝑁 )  ·  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  /  ( log ‘ 𝑀 ) ) ) ) | 
						
							| 106 | 91 48 | rerpdivcld | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  /  ( log ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 107 | 16 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 108 | 15 | simprd | ⊢ ( 𝜑  →  1  <  𝑁 ) | 
						
							| 109 | 107 108 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℝ+ ) | 
						
							| 110 | 90 106 109 | ledivmuld | ⊢ ( 𝜑  →  ( ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  /  ( log ‘ 𝑁 ) )  ≤  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  /  ( log ‘ 𝑀 ) )  ↔  ( log ‘ ( 𝐹 ‘ 𝑁 ) )  ≤  ( ( log ‘ 𝑁 )  ·  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  /  ( log ‘ 𝑀 ) ) ) ) ) | 
						
							| 111 | 105 110 | mpbird | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  /  ( log ‘ 𝑁 ) )  ≤  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  /  ( log ‘ 𝑀 ) ) ) | 
						
							| 112 | 111 8 10 | 3brtr4g | ⊢ ( 𝜑  →  𝑅  ≤  𝑆 ) | 
						
							| 113 | 75 112 | jca | ⊢ ( 𝜑  →  ( 1  <  ( 𝐹 ‘ 𝑀 )  ∧  𝑅  ≤  𝑆 ) ) |