| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q |  |-  Q = ( CCfld |`s QQ ) | 
						
							| 2 |  | qabsabv.a |  |-  A = ( AbsVal ` Q ) | 
						
							| 3 |  | padic.j |  |-  J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) | 
						
							| 4 |  | ostth.k |  |-  K = ( x e. QQ |-> if ( x = 0 , 0 , 1 ) ) | 
						
							| 5 |  | ostth.1 |  |-  ( ph -> F e. A ) | 
						
							| 6 |  | ostth2.2 |  |-  ( ph -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 7 |  | ostth2.3 |  |-  ( ph -> 1 < ( F ` N ) ) | 
						
							| 8 |  | ostth2.4 |  |-  R = ( ( log ` ( F ` N ) ) / ( log ` N ) ) | 
						
							| 9 |  | ostth2.5 |  |-  ( ph -> M e. ( ZZ>= ` 2 ) ) | 
						
							| 10 |  | ostth2.6 |  |-  S = ( ( log ` ( F ` M ) ) / ( log ` M ) ) | 
						
							| 11 |  | ostth2.7 |  |-  T = if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) | 
						
							| 12 |  | ostth2.8 |  |-  U = ( ( log ` N ) / ( log ` M ) ) | 
						
							| 13 |  | 1re |  |-  1 e. RR | 
						
							| 14 |  | eluz2b2 |  |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) | 
						
							| 15 | 6 14 | sylib |  |-  ( ph -> ( N e. NN /\ 1 < N ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ph -> N e. NN ) | 
						
							| 17 |  | nnq |  |-  ( N e. NN -> N e. QQ ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> N e. QQ ) | 
						
							| 19 | 1 | qrngbas |  |-  QQ = ( Base ` Q ) | 
						
							| 20 | 2 19 | abvcl |  |-  ( ( F e. A /\ N e. QQ ) -> ( F ` N ) e. RR ) | 
						
							| 21 | 5 18 20 | syl2anc |  |-  ( ph -> ( F ` N ) e. RR ) | 
						
							| 22 |  | ltnle |  |-  ( ( 1 e. RR /\ ( F ` N ) e. RR ) -> ( 1 < ( F ` N ) <-> -. ( F ` N ) <_ 1 ) ) | 
						
							| 23 | 13 21 22 | sylancr |  |-  ( ph -> ( 1 < ( F ` N ) <-> -. ( F ` N ) <_ 1 ) ) | 
						
							| 24 | 7 23 | mpbid |  |-  ( ph -> -. ( F ` N ) <_ 1 ) | 
						
							| 25 |  | eluz2b2 |  |-  ( M e. ( ZZ>= ` 2 ) <-> ( M e. NN /\ 1 < M ) ) | 
						
							| 26 | 9 25 | sylib |  |-  ( ph -> ( M e. NN /\ 1 < M ) ) | 
						
							| 27 | 26 | simpld |  |-  ( ph -> M e. NN ) | 
						
							| 28 |  | nnq |  |-  ( M e. NN -> M e. QQ ) | 
						
							| 29 | 27 28 | syl |  |-  ( ph -> M e. QQ ) | 
						
							| 30 | 2 19 | abvcl |  |-  ( ( F e. A /\ M e. QQ ) -> ( F ` M ) e. RR ) | 
						
							| 31 | 5 29 30 | syl2anc |  |-  ( ph -> ( F ` M ) e. RR ) | 
						
							| 32 |  | ifcl |  |-  ( ( 1 e. RR /\ ( F ` M ) e. RR ) -> if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) e. RR ) | 
						
							| 33 | 13 31 32 | sylancr |  |-  ( ph -> if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) e. RR ) | 
						
							| 34 | 11 33 | eqeltrid |  |-  ( ph -> T e. RR ) | 
						
							| 35 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 36 | 13 | a1i |  |-  ( ph -> 1 e. RR ) | 
						
							| 37 |  | 0lt1 |  |-  0 < 1 | 
						
							| 38 | 37 | a1i |  |-  ( ph -> 0 < 1 ) | 
						
							| 39 |  | max2 |  |-  ( ( ( F ` M ) e. RR /\ 1 e. RR ) -> 1 <_ if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) ) | 
						
							| 40 | 31 13 39 | sylancl |  |-  ( ph -> 1 <_ if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) ) | 
						
							| 41 | 40 11 | breqtrrdi |  |-  ( ph -> 1 <_ T ) | 
						
							| 42 | 35 36 34 38 41 | ltletrd |  |-  ( ph -> 0 < T ) | 
						
							| 43 | 34 42 | elrpd |  |-  ( ph -> T e. RR+ ) | 
						
							| 44 | 16 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 45 | 44 | relogcld |  |-  ( ph -> ( log ` N ) e. RR ) | 
						
							| 46 | 27 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 47 | 26 | simprd |  |-  ( ph -> 1 < M ) | 
						
							| 48 | 46 47 | rplogcld |  |-  ( ph -> ( log ` M ) e. RR+ ) | 
						
							| 49 | 45 48 | rerpdivcld |  |-  ( ph -> ( ( log ` N ) / ( log ` M ) ) e. RR ) | 
						
							| 50 | 12 49 | eqeltrid |  |-  ( ph -> U e. RR ) | 
						
							| 51 | 43 50 | rpcxpcld |  |-  ( ph -> ( T ^c U ) e. RR+ ) | 
						
							| 52 | 21 51 | rerpdivcld |  |-  ( ph -> ( ( F ` N ) / ( T ^c U ) ) e. RR ) | 
						
							| 53 | 46 34 | remulcld |  |-  ( ph -> ( M x. T ) e. RR ) | 
						
							| 54 |  | peano2re |  |-  ( U e. RR -> ( U + 1 ) e. RR ) | 
						
							| 55 | 50 54 | syl |  |-  ( ph -> ( U + 1 ) e. RR ) | 
						
							| 56 | 53 55 | remulcld |  |-  ( ph -> ( ( M x. T ) x. ( U + 1 ) ) e. RR ) | 
						
							| 57 | 1 2 3 4 5 6 7 8 9 10 11 12 | ostth2lem3 |  |-  ( ( ph /\ n e. NN ) -> ( ( ( F ` N ) / ( T ^c U ) ) ^ n ) <_ ( n x. ( ( M x. T ) x. ( U + 1 ) ) ) ) | 
						
							| 58 | 52 56 57 | ostth2lem1 |  |-  ( ph -> ( ( F ` N ) / ( T ^c U ) ) <_ 1 ) | 
						
							| 59 | 21 36 51 | ledivmuld |  |-  ( ph -> ( ( ( F ` N ) / ( T ^c U ) ) <_ 1 <-> ( F ` N ) <_ ( ( T ^c U ) x. 1 ) ) ) | 
						
							| 60 | 58 59 | mpbid |  |-  ( ph -> ( F ` N ) <_ ( ( T ^c U ) x. 1 ) ) | 
						
							| 61 | 51 | rpcnd |  |-  ( ph -> ( T ^c U ) e. CC ) | 
						
							| 62 | 61 | mulridd |  |-  ( ph -> ( ( T ^c U ) x. 1 ) = ( T ^c U ) ) | 
						
							| 63 | 60 62 | breqtrd |  |-  ( ph -> ( F ` N ) <_ ( T ^c U ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ ( F ` M ) <_ 1 ) -> ( F ` N ) <_ ( T ^c U ) ) | 
						
							| 65 |  | iftrue |  |-  ( ( F ` M ) <_ 1 -> if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) = 1 ) | 
						
							| 66 | 11 65 | eqtrid |  |-  ( ( F ` M ) <_ 1 -> T = 1 ) | 
						
							| 67 | 66 | oveq1d |  |-  ( ( F ` M ) <_ 1 -> ( T ^c U ) = ( 1 ^c U ) ) | 
						
							| 68 | 50 | recnd |  |-  ( ph -> U e. CC ) | 
						
							| 69 | 68 | 1cxpd |  |-  ( ph -> ( 1 ^c U ) = 1 ) | 
						
							| 70 | 67 69 | sylan9eqr |  |-  ( ( ph /\ ( F ` M ) <_ 1 ) -> ( T ^c U ) = 1 ) | 
						
							| 71 | 64 70 | breqtrd |  |-  ( ( ph /\ ( F ` M ) <_ 1 ) -> ( F ` N ) <_ 1 ) | 
						
							| 72 | 24 71 | mtand |  |-  ( ph -> -. ( F ` M ) <_ 1 ) | 
						
							| 73 |  | ltnle |  |-  ( ( 1 e. RR /\ ( F ` M ) e. RR ) -> ( 1 < ( F ` M ) <-> -. ( F ` M ) <_ 1 ) ) | 
						
							| 74 | 13 31 73 | sylancr |  |-  ( ph -> ( 1 < ( F ` M ) <-> -. ( F ` M ) <_ 1 ) ) | 
						
							| 75 | 72 74 | mpbird |  |-  ( ph -> 1 < ( F ` M ) ) | 
						
							| 76 | 35 36 21 38 7 | lttrd |  |-  ( ph -> 0 < ( F ` N ) ) | 
						
							| 77 | 21 76 | elrpd |  |-  ( ph -> ( F ` N ) e. RR+ ) | 
						
							| 78 | 77 | reeflogd |  |-  ( ph -> ( exp ` ( log ` ( F ` N ) ) ) = ( F ` N ) ) | 
						
							| 79 |  | iffalse |  |-  ( -. ( F ` M ) <_ 1 -> if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) = ( F ` M ) ) | 
						
							| 80 | 11 79 | eqtrid |  |-  ( -. ( F ` M ) <_ 1 -> T = ( F ` M ) ) | 
						
							| 81 | 72 80 | syl |  |-  ( ph -> T = ( F ` M ) ) | 
						
							| 82 | 81 | oveq1d |  |-  ( ph -> ( T ^c U ) = ( ( F ` M ) ^c U ) ) | 
						
							| 83 | 31 | recnd |  |-  ( ph -> ( F ` M ) e. CC ) | 
						
							| 84 | 35 36 31 38 75 | lttrd |  |-  ( ph -> 0 < ( F ` M ) ) | 
						
							| 85 | 31 84 | elrpd |  |-  ( ph -> ( F ` M ) e. RR+ ) | 
						
							| 86 | 85 | rpne0d |  |-  ( ph -> ( F ` M ) =/= 0 ) | 
						
							| 87 | 83 86 68 | cxpefd |  |-  ( ph -> ( ( F ` M ) ^c U ) = ( exp ` ( U x. ( log ` ( F ` M ) ) ) ) ) | 
						
							| 88 | 82 87 | eqtr2d |  |-  ( ph -> ( exp ` ( U x. ( log ` ( F ` M ) ) ) ) = ( T ^c U ) ) | 
						
							| 89 | 63 78 88 | 3brtr4d |  |-  ( ph -> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( U x. ( log ` ( F ` M ) ) ) ) ) | 
						
							| 90 | 77 | relogcld |  |-  ( ph -> ( log ` ( F ` N ) ) e. RR ) | 
						
							| 91 | 85 | relogcld |  |-  ( ph -> ( log ` ( F ` M ) ) e. RR ) | 
						
							| 92 | 50 91 | remulcld |  |-  ( ph -> ( U x. ( log ` ( F ` M ) ) ) e. RR ) | 
						
							| 93 |  | efle |  |-  ( ( ( log ` ( F ` N ) ) e. RR /\ ( U x. ( log ` ( F ` M ) ) ) e. RR ) -> ( ( log ` ( F ` N ) ) <_ ( U x. ( log ` ( F ` M ) ) ) <-> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( U x. ( log ` ( F ` M ) ) ) ) ) ) | 
						
							| 94 | 90 92 93 | syl2anc |  |-  ( ph -> ( ( log ` ( F ` N ) ) <_ ( U x. ( log ` ( F ` M ) ) ) <-> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( U x. ( log ` ( F ` M ) ) ) ) ) ) | 
						
							| 95 | 89 94 | mpbird |  |-  ( ph -> ( log ` ( F ` N ) ) <_ ( U x. ( log ` ( F ` M ) ) ) ) | 
						
							| 96 | 45 | recnd |  |-  ( ph -> ( log ` N ) e. CC ) | 
						
							| 97 | 91 | recnd |  |-  ( ph -> ( log ` ( F ` M ) ) e. CC ) | 
						
							| 98 | 48 | rpcnd |  |-  ( ph -> ( log ` M ) e. CC ) | 
						
							| 99 | 48 | rpne0d |  |-  ( ph -> ( log ` M ) =/= 0 ) | 
						
							| 100 | 96 97 98 99 | div12d |  |-  ( ph -> ( ( log ` N ) x. ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) = ( ( log ` ( F ` M ) ) x. ( ( log ` N ) / ( log ` M ) ) ) ) | 
						
							| 101 | 12 | oveq2i |  |-  ( ( log ` ( F ` M ) ) x. U ) = ( ( log ` ( F ` M ) ) x. ( ( log ` N ) / ( log ` M ) ) ) | 
						
							| 102 | 100 101 | eqtr4di |  |-  ( ph -> ( ( log ` N ) x. ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) = ( ( log ` ( F ` M ) ) x. U ) ) | 
						
							| 103 | 97 68 | mulcomd |  |-  ( ph -> ( ( log ` ( F ` M ) ) x. U ) = ( U x. ( log ` ( F ` M ) ) ) ) | 
						
							| 104 | 102 103 | eqtrd |  |-  ( ph -> ( ( log ` N ) x. ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) = ( U x. ( log ` ( F ` M ) ) ) ) | 
						
							| 105 | 95 104 | breqtrrd |  |-  ( ph -> ( log ` ( F ` N ) ) <_ ( ( log ` N ) x. ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) ) | 
						
							| 106 | 91 48 | rerpdivcld |  |-  ( ph -> ( ( log ` ( F ` M ) ) / ( log ` M ) ) e. RR ) | 
						
							| 107 | 16 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 108 | 15 | simprd |  |-  ( ph -> 1 < N ) | 
						
							| 109 | 107 108 | rplogcld |  |-  ( ph -> ( log ` N ) e. RR+ ) | 
						
							| 110 | 90 106 109 | ledivmuld |  |-  ( ph -> ( ( ( log ` ( F ` N ) ) / ( log ` N ) ) <_ ( ( log ` ( F ` M ) ) / ( log ` M ) ) <-> ( log ` ( F ` N ) ) <_ ( ( log ` N ) x. ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) ) ) | 
						
							| 111 | 105 110 | mpbird |  |-  ( ph -> ( ( log ` ( F ` N ) ) / ( log ` N ) ) <_ ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) | 
						
							| 112 | 111 8 10 | 3brtr4g |  |-  ( ph -> R <_ S ) | 
						
							| 113 | 75 112 | jca |  |-  ( ph -> ( 1 < ( F ` M ) /\ R <_ S ) ) |