Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
2 |
|
qabsabv.a |
|- A = ( AbsVal ` Q ) |
3 |
|
padic.j |
|- J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) |
4 |
|
ostth.k |
|- K = ( x e. QQ |-> if ( x = 0 , 0 , 1 ) ) |
5 |
|
ostth.1 |
|- ( ph -> F e. A ) |
6 |
|
ostth2.2 |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
7 |
|
ostth2.3 |
|- ( ph -> 1 < ( F ` N ) ) |
8 |
|
ostth2.4 |
|- R = ( ( log ` ( F ` N ) ) / ( log ` N ) ) |
9 |
|
ostth2.5 |
|- ( ph -> M e. ( ZZ>= ` 2 ) ) |
10 |
|
ostth2.6 |
|- S = ( ( log ` ( F ` M ) ) / ( log ` M ) ) |
11 |
|
ostth2.7 |
|- T = if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) |
12 |
|
ostth2.8 |
|- U = ( ( log ` N ) / ( log ` M ) ) |
13 |
|
1re |
|- 1 e. RR |
14 |
|
eluz2b2 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) |
15 |
6 14
|
sylib |
|- ( ph -> ( N e. NN /\ 1 < N ) ) |
16 |
15
|
simpld |
|- ( ph -> N e. NN ) |
17 |
|
nnq |
|- ( N e. NN -> N e. QQ ) |
18 |
16 17
|
syl |
|- ( ph -> N e. QQ ) |
19 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
20 |
2 19
|
abvcl |
|- ( ( F e. A /\ N e. QQ ) -> ( F ` N ) e. RR ) |
21 |
5 18 20
|
syl2anc |
|- ( ph -> ( F ` N ) e. RR ) |
22 |
|
ltnle |
|- ( ( 1 e. RR /\ ( F ` N ) e. RR ) -> ( 1 < ( F ` N ) <-> -. ( F ` N ) <_ 1 ) ) |
23 |
13 21 22
|
sylancr |
|- ( ph -> ( 1 < ( F ` N ) <-> -. ( F ` N ) <_ 1 ) ) |
24 |
7 23
|
mpbid |
|- ( ph -> -. ( F ` N ) <_ 1 ) |
25 |
|
eluz2b2 |
|- ( M e. ( ZZ>= ` 2 ) <-> ( M e. NN /\ 1 < M ) ) |
26 |
9 25
|
sylib |
|- ( ph -> ( M e. NN /\ 1 < M ) ) |
27 |
26
|
simpld |
|- ( ph -> M e. NN ) |
28 |
|
nnq |
|- ( M e. NN -> M e. QQ ) |
29 |
27 28
|
syl |
|- ( ph -> M e. QQ ) |
30 |
2 19
|
abvcl |
|- ( ( F e. A /\ M e. QQ ) -> ( F ` M ) e. RR ) |
31 |
5 29 30
|
syl2anc |
|- ( ph -> ( F ` M ) e. RR ) |
32 |
|
ifcl |
|- ( ( 1 e. RR /\ ( F ` M ) e. RR ) -> if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) e. RR ) |
33 |
13 31 32
|
sylancr |
|- ( ph -> if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) e. RR ) |
34 |
11 33
|
eqeltrid |
|- ( ph -> T e. RR ) |
35 |
|
0red |
|- ( ph -> 0 e. RR ) |
36 |
13
|
a1i |
|- ( ph -> 1 e. RR ) |
37 |
|
0lt1 |
|- 0 < 1 |
38 |
37
|
a1i |
|- ( ph -> 0 < 1 ) |
39 |
|
max2 |
|- ( ( ( F ` M ) e. RR /\ 1 e. RR ) -> 1 <_ if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) ) |
40 |
31 13 39
|
sylancl |
|- ( ph -> 1 <_ if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) ) |
41 |
40 11
|
breqtrrdi |
|- ( ph -> 1 <_ T ) |
42 |
35 36 34 38 41
|
ltletrd |
|- ( ph -> 0 < T ) |
43 |
34 42
|
elrpd |
|- ( ph -> T e. RR+ ) |
44 |
16
|
nnrpd |
|- ( ph -> N e. RR+ ) |
45 |
44
|
relogcld |
|- ( ph -> ( log ` N ) e. RR ) |
46 |
27
|
nnred |
|- ( ph -> M e. RR ) |
47 |
26
|
simprd |
|- ( ph -> 1 < M ) |
48 |
46 47
|
rplogcld |
|- ( ph -> ( log ` M ) e. RR+ ) |
49 |
45 48
|
rerpdivcld |
|- ( ph -> ( ( log ` N ) / ( log ` M ) ) e. RR ) |
50 |
12 49
|
eqeltrid |
|- ( ph -> U e. RR ) |
51 |
43 50
|
rpcxpcld |
|- ( ph -> ( T ^c U ) e. RR+ ) |
52 |
21 51
|
rerpdivcld |
|- ( ph -> ( ( F ` N ) / ( T ^c U ) ) e. RR ) |
53 |
46 34
|
remulcld |
|- ( ph -> ( M x. T ) e. RR ) |
54 |
|
peano2re |
|- ( U e. RR -> ( U + 1 ) e. RR ) |
55 |
50 54
|
syl |
|- ( ph -> ( U + 1 ) e. RR ) |
56 |
53 55
|
remulcld |
|- ( ph -> ( ( M x. T ) x. ( U + 1 ) ) e. RR ) |
57 |
1 2 3 4 5 6 7 8 9 10 11 12
|
ostth2lem3 |
|- ( ( ph /\ n e. NN ) -> ( ( ( F ` N ) / ( T ^c U ) ) ^ n ) <_ ( n x. ( ( M x. T ) x. ( U + 1 ) ) ) ) |
58 |
52 56 57
|
ostth2lem1 |
|- ( ph -> ( ( F ` N ) / ( T ^c U ) ) <_ 1 ) |
59 |
21 36 51
|
ledivmuld |
|- ( ph -> ( ( ( F ` N ) / ( T ^c U ) ) <_ 1 <-> ( F ` N ) <_ ( ( T ^c U ) x. 1 ) ) ) |
60 |
58 59
|
mpbid |
|- ( ph -> ( F ` N ) <_ ( ( T ^c U ) x. 1 ) ) |
61 |
51
|
rpcnd |
|- ( ph -> ( T ^c U ) e. CC ) |
62 |
61
|
mulid1d |
|- ( ph -> ( ( T ^c U ) x. 1 ) = ( T ^c U ) ) |
63 |
60 62
|
breqtrd |
|- ( ph -> ( F ` N ) <_ ( T ^c U ) ) |
64 |
63
|
adantr |
|- ( ( ph /\ ( F ` M ) <_ 1 ) -> ( F ` N ) <_ ( T ^c U ) ) |
65 |
|
iftrue |
|- ( ( F ` M ) <_ 1 -> if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) = 1 ) |
66 |
11 65
|
eqtrid |
|- ( ( F ` M ) <_ 1 -> T = 1 ) |
67 |
66
|
oveq1d |
|- ( ( F ` M ) <_ 1 -> ( T ^c U ) = ( 1 ^c U ) ) |
68 |
50
|
recnd |
|- ( ph -> U e. CC ) |
69 |
68
|
1cxpd |
|- ( ph -> ( 1 ^c U ) = 1 ) |
70 |
67 69
|
sylan9eqr |
|- ( ( ph /\ ( F ` M ) <_ 1 ) -> ( T ^c U ) = 1 ) |
71 |
64 70
|
breqtrd |
|- ( ( ph /\ ( F ` M ) <_ 1 ) -> ( F ` N ) <_ 1 ) |
72 |
24 71
|
mtand |
|- ( ph -> -. ( F ` M ) <_ 1 ) |
73 |
|
ltnle |
|- ( ( 1 e. RR /\ ( F ` M ) e. RR ) -> ( 1 < ( F ` M ) <-> -. ( F ` M ) <_ 1 ) ) |
74 |
13 31 73
|
sylancr |
|- ( ph -> ( 1 < ( F ` M ) <-> -. ( F ` M ) <_ 1 ) ) |
75 |
72 74
|
mpbird |
|- ( ph -> 1 < ( F ` M ) ) |
76 |
35 36 21 38 7
|
lttrd |
|- ( ph -> 0 < ( F ` N ) ) |
77 |
21 76
|
elrpd |
|- ( ph -> ( F ` N ) e. RR+ ) |
78 |
77
|
reeflogd |
|- ( ph -> ( exp ` ( log ` ( F ` N ) ) ) = ( F ` N ) ) |
79 |
|
iffalse |
|- ( -. ( F ` M ) <_ 1 -> if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) = ( F ` M ) ) |
80 |
11 79
|
eqtrid |
|- ( -. ( F ` M ) <_ 1 -> T = ( F ` M ) ) |
81 |
72 80
|
syl |
|- ( ph -> T = ( F ` M ) ) |
82 |
81
|
oveq1d |
|- ( ph -> ( T ^c U ) = ( ( F ` M ) ^c U ) ) |
83 |
31
|
recnd |
|- ( ph -> ( F ` M ) e. CC ) |
84 |
35 36 31 38 75
|
lttrd |
|- ( ph -> 0 < ( F ` M ) ) |
85 |
31 84
|
elrpd |
|- ( ph -> ( F ` M ) e. RR+ ) |
86 |
85
|
rpne0d |
|- ( ph -> ( F ` M ) =/= 0 ) |
87 |
83 86 68
|
cxpefd |
|- ( ph -> ( ( F ` M ) ^c U ) = ( exp ` ( U x. ( log ` ( F ` M ) ) ) ) ) |
88 |
82 87
|
eqtr2d |
|- ( ph -> ( exp ` ( U x. ( log ` ( F ` M ) ) ) ) = ( T ^c U ) ) |
89 |
63 78 88
|
3brtr4d |
|- ( ph -> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( U x. ( log ` ( F ` M ) ) ) ) ) |
90 |
77
|
relogcld |
|- ( ph -> ( log ` ( F ` N ) ) e. RR ) |
91 |
85
|
relogcld |
|- ( ph -> ( log ` ( F ` M ) ) e. RR ) |
92 |
50 91
|
remulcld |
|- ( ph -> ( U x. ( log ` ( F ` M ) ) ) e. RR ) |
93 |
|
efle |
|- ( ( ( log ` ( F ` N ) ) e. RR /\ ( U x. ( log ` ( F ` M ) ) ) e. RR ) -> ( ( log ` ( F ` N ) ) <_ ( U x. ( log ` ( F ` M ) ) ) <-> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( U x. ( log ` ( F ` M ) ) ) ) ) ) |
94 |
90 92 93
|
syl2anc |
|- ( ph -> ( ( log ` ( F ` N ) ) <_ ( U x. ( log ` ( F ` M ) ) ) <-> ( exp ` ( log ` ( F ` N ) ) ) <_ ( exp ` ( U x. ( log ` ( F ` M ) ) ) ) ) ) |
95 |
89 94
|
mpbird |
|- ( ph -> ( log ` ( F ` N ) ) <_ ( U x. ( log ` ( F ` M ) ) ) ) |
96 |
45
|
recnd |
|- ( ph -> ( log ` N ) e. CC ) |
97 |
91
|
recnd |
|- ( ph -> ( log ` ( F ` M ) ) e. CC ) |
98 |
48
|
rpcnd |
|- ( ph -> ( log ` M ) e. CC ) |
99 |
48
|
rpne0d |
|- ( ph -> ( log ` M ) =/= 0 ) |
100 |
96 97 98 99
|
div12d |
|- ( ph -> ( ( log ` N ) x. ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) = ( ( log ` ( F ` M ) ) x. ( ( log ` N ) / ( log ` M ) ) ) ) |
101 |
12
|
oveq2i |
|- ( ( log ` ( F ` M ) ) x. U ) = ( ( log ` ( F ` M ) ) x. ( ( log ` N ) / ( log ` M ) ) ) |
102 |
100 101
|
eqtr4di |
|- ( ph -> ( ( log ` N ) x. ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) = ( ( log ` ( F ` M ) ) x. U ) ) |
103 |
97 68
|
mulcomd |
|- ( ph -> ( ( log ` ( F ` M ) ) x. U ) = ( U x. ( log ` ( F ` M ) ) ) ) |
104 |
102 103
|
eqtrd |
|- ( ph -> ( ( log ` N ) x. ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) = ( U x. ( log ` ( F ` M ) ) ) ) |
105 |
95 104
|
breqtrrd |
|- ( ph -> ( log ` ( F ` N ) ) <_ ( ( log ` N ) x. ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) ) |
106 |
91 48
|
rerpdivcld |
|- ( ph -> ( ( log ` ( F ` M ) ) / ( log ` M ) ) e. RR ) |
107 |
16
|
nnred |
|- ( ph -> N e. RR ) |
108 |
15
|
simprd |
|- ( ph -> 1 < N ) |
109 |
107 108
|
rplogcld |
|- ( ph -> ( log ` N ) e. RR+ ) |
110 |
90 106 109
|
ledivmuld |
|- ( ph -> ( ( ( log ` ( F ` N ) ) / ( log ` N ) ) <_ ( ( log ` ( F ` M ) ) / ( log ` M ) ) <-> ( log ` ( F ` N ) ) <_ ( ( log ` N ) x. ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) ) ) |
111 |
105 110
|
mpbird |
|- ( ph -> ( ( log ` ( F ` N ) ) / ( log ` N ) ) <_ ( ( log ` ( F ` M ) ) / ( log ` M ) ) ) |
112 |
111 8 10
|
3brtr4g |
|- ( ph -> R <_ S ) |
113 |
75 112
|
jca |
|- ( ph -> ( 1 < ( F ` M ) /\ R <_ S ) ) |