Metamath Proof Explorer


Theorem ostth2lem4

Description: Lemma for ostth2 . (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
padic.j J=qxifx=00qqpCntx
ostth.k K=xifx=001
ostth.1 φFA
ostth2.2 φN2
ostth2.3 φ1<FN
ostth2.4 R=logFNlogN
ostth2.5 φM2
ostth2.6 S=logFMlogM
ostth2.7 T=ifFM11FM
ostth2.8 U=logNlogM
Assertion ostth2lem4 φ1<FMRS

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 padic.j J=qxifx=00qqpCntx
4 ostth.k K=xifx=001
5 ostth.1 φFA
6 ostth2.2 φN2
7 ostth2.3 φ1<FN
8 ostth2.4 R=logFNlogN
9 ostth2.5 φM2
10 ostth2.6 S=logFMlogM
11 ostth2.7 T=ifFM11FM
12 ostth2.8 U=logNlogM
13 1re 1
14 eluz2b2 N2N1<N
15 6 14 sylib φN1<N
16 15 simpld φN
17 nnq NN
18 16 17 syl φN
19 1 qrngbas =BaseQ
20 2 19 abvcl FANFN
21 5 18 20 syl2anc φFN
22 ltnle 1FN1<FN¬FN1
23 13 21 22 sylancr φ1<FN¬FN1
24 7 23 mpbid φ¬FN1
25 eluz2b2 M2M1<M
26 9 25 sylib φM1<M
27 26 simpld φM
28 nnq MM
29 27 28 syl φM
30 2 19 abvcl FAMFM
31 5 29 30 syl2anc φFM
32 ifcl 1FMifFM11FM
33 13 31 32 sylancr φifFM11FM
34 11 33 eqeltrid φT
35 0red φ0
36 13 a1i φ1
37 0lt1 0<1
38 37 a1i φ0<1
39 max2 FM11ifFM11FM
40 31 13 39 sylancl φ1ifFM11FM
41 40 11 breqtrrdi φ1T
42 35 36 34 38 41 ltletrd φ0<T
43 34 42 elrpd φT+
44 16 nnrpd φN+
45 44 relogcld φlogN
46 27 nnred φM
47 26 simprd φ1<M
48 46 47 rplogcld φlogM+
49 45 48 rerpdivcld φlogNlogM
50 12 49 eqeltrid φU
51 43 50 rpcxpcld φTU+
52 21 51 rerpdivcld φFNTU
53 46 34 remulcld φMT
54 peano2re UU+1
55 50 54 syl φU+1
56 53 55 remulcld φMTU+1
57 1 2 3 4 5 6 7 8 9 10 11 12 ostth2lem3 φnFNTUnnMTU+1
58 52 56 57 ostth2lem1 φFNTU1
59 21 36 51 ledivmuld φFNTU1FNTU1
60 58 59 mpbid φFNTU1
61 51 rpcnd φTU
62 61 mulridd φTU1=TU
63 60 62 breqtrd φFNTU
64 63 adantr φFM1FNTU
65 iftrue FM1ifFM11FM=1
66 11 65 eqtrid FM1T=1
67 66 oveq1d FM1TU=1U
68 50 recnd φU
69 68 1cxpd φ1U=1
70 67 69 sylan9eqr φFM1TU=1
71 64 70 breqtrd φFM1FN1
72 24 71 mtand φ¬FM1
73 ltnle 1FM1<FM¬FM1
74 13 31 73 sylancr φ1<FM¬FM1
75 72 74 mpbird φ1<FM
76 35 36 21 38 7 lttrd φ0<FN
77 21 76 elrpd φFN+
78 77 reeflogd φelogFN=FN
79 iffalse ¬FM1ifFM11FM=FM
80 11 79 eqtrid ¬FM1T=FM
81 72 80 syl φT=FM
82 81 oveq1d φTU=FMU
83 31 recnd φFM
84 35 36 31 38 75 lttrd φ0<FM
85 31 84 elrpd φFM+
86 85 rpne0d φFM0
87 83 86 68 cxpefd φFMU=eUlogFM
88 82 87 eqtr2d φeUlogFM=TU
89 63 78 88 3brtr4d φelogFNeUlogFM
90 77 relogcld φlogFN
91 85 relogcld φlogFM
92 50 91 remulcld φUlogFM
93 efle logFNUlogFMlogFNUlogFMelogFNeUlogFM
94 90 92 93 syl2anc φlogFNUlogFMelogFNeUlogFM
95 89 94 mpbird φlogFNUlogFM
96 45 recnd φlogN
97 91 recnd φlogFM
98 48 rpcnd φlogM
99 48 rpne0d φlogM0
100 96 97 98 99 div12d φlogNlogFMlogM=logFMlogNlogM
101 12 oveq2i logFMU=logFMlogNlogM
102 100 101 eqtr4di φlogNlogFMlogM=logFMU
103 97 68 mulcomd φlogFMU=UlogFM
104 102 103 eqtrd φlogNlogFMlogM=UlogFM
105 95 104 breqtrrd φlogFNlogNlogFMlogM
106 91 48 rerpdivcld φlogFMlogM
107 16 nnred φN
108 15 simprd φ1<N
109 107 108 rplogcld φlogN+
110 90 106 109 ledivmuld φlogFNlogNlogFMlogMlogFNlogNlogFMlogM
111 105 110 mpbird φlogFNlogNlogFMlogM
112 111 8 10 3brtr4g φRS
113 75 112 jca φ1<FMRS