Metamath Proof Explorer


Theorem ostth2lem4

Description: Lemma for ostth2 . (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q = fld 𝑠
qabsabv.a A = AbsVal Q
padic.j J = q x if x = 0 0 q q pCnt x
ostth.k K = x if x = 0 0 1
ostth.1 φ F A
ostth2.2 φ N 2
ostth2.3 φ 1 < F N
ostth2.4 R = log F N log N
ostth2.5 φ M 2
ostth2.6 S = log F M log M
ostth2.7 T = if F M 1 1 F M
ostth2.8 U = log N log M
Assertion ostth2lem4 φ 1 < F M R S

Proof

Step Hyp Ref Expression
1 qrng.q Q = fld 𝑠
2 qabsabv.a A = AbsVal Q
3 padic.j J = q x if x = 0 0 q q pCnt x
4 ostth.k K = x if x = 0 0 1
5 ostth.1 φ F A
6 ostth2.2 φ N 2
7 ostth2.3 φ 1 < F N
8 ostth2.4 R = log F N log N
9 ostth2.5 φ M 2
10 ostth2.6 S = log F M log M
11 ostth2.7 T = if F M 1 1 F M
12 ostth2.8 U = log N log M
13 1re 1
14 eluz2b2 N 2 N 1 < N
15 6 14 sylib φ N 1 < N
16 15 simpld φ N
17 nnq N N
18 16 17 syl φ N
19 1 qrngbas = Base Q
20 2 19 abvcl F A N F N
21 5 18 20 syl2anc φ F N
22 ltnle 1 F N 1 < F N ¬ F N 1
23 13 21 22 sylancr φ 1 < F N ¬ F N 1
24 7 23 mpbid φ ¬ F N 1
25 eluz2b2 M 2 M 1 < M
26 9 25 sylib φ M 1 < M
27 26 simpld φ M
28 nnq M M
29 27 28 syl φ M
30 2 19 abvcl F A M F M
31 5 29 30 syl2anc φ F M
32 ifcl 1 F M if F M 1 1 F M
33 13 31 32 sylancr φ if F M 1 1 F M
34 11 33 eqeltrid φ T
35 0red φ 0
36 13 a1i φ 1
37 0lt1 0 < 1
38 37 a1i φ 0 < 1
39 max2 F M 1 1 if F M 1 1 F M
40 31 13 39 sylancl φ 1 if F M 1 1 F M
41 40 11 breqtrrdi φ 1 T
42 35 36 34 38 41 ltletrd φ 0 < T
43 34 42 elrpd φ T +
44 16 nnrpd φ N +
45 44 relogcld φ log N
46 27 nnred φ M
47 26 simprd φ 1 < M
48 46 47 rplogcld φ log M +
49 45 48 rerpdivcld φ log N log M
50 12 49 eqeltrid φ U
51 43 50 rpcxpcld φ T U +
52 21 51 rerpdivcld φ F N T U
53 46 34 remulcld φ M T
54 peano2re U U + 1
55 50 54 syl φ U + 1
56 53 55 remulcld φ M T U + 1
57 1 2 3 4 5 6 7 8 9 10 11 12 ostth2lem3 φ n F N T U n n M T U + 1
58 52 56 57 ostth2lem1 φ F N T U 1
59 21 36 51 ledivmuld φ F N T U 1 F N T U 1
60 58 59 mpbid φ F N T U 1
61 51 rpcnd φ T U
62 61 mulid1d φ T U 1 = T U
63 60 62 breqtrd φ F N T U
64 63 adantr φ F M 1 F N T U
65 iftrue F M 1 if F M 1 1 F M = 1
66 11 65 syl5eq F M 1 T = 1
67 66 oveq1d F M 1 T U = 1 U
68 50 recnd φ U
69 68 1cxpd φ 1 U = 1
70 67 69 sylan9eqr φ F M 1 T U = 1
71 64 70 breqtrd φ F M 1 F N 1
72 24 71 mtand φ ¬ F M 1
73 ltnle 1 F M 1 < F M ¬ F M 1
74 13 31 73 sylancr φ 1 < F M ¬ F M 1
75 72 74 mpbird φ 1 < F M
76 35 36 21 38 7 lttrd φ 0 < F N
77 21 76 elrpd φ F N +
78 77 reeflogd φ e log F N = F N
79 iffalse ¬ F M 1 if F M 1 1 F M = F M
80 11 79 syl5eq ¬ F M 1 T = F M
81 72 80 syl φ T = F M
82 81 oveq1d φ T U = F M U
83 31 recnd φ F M
84 35 36 31 38 75 lttrd φ 0 < F M
85 31 84 elrpd φ F M +
86 85 rpne0d φ F M 0
87 83 86 68 cxpefd φ F M U = e U log F M
88 82 87 eqtr2d φ e U log F M = T U
89 63 78 88 3brtr4d φ e log F N e U log F M
90 77 relogcld φ log F N
91 85 relogcld φ log F M
92 50 91 remulcld φ U log F M
93 efle log F N U log F M log F N U log F M e log F N e U log F M
94 90 92 93 syl2anc φ log F N U log F M e log F N e U log F M
95 89 94 mpbird φ log F N U log F M
96 45 recnd φ log N
97 91 recnd φ log F M
98 48 rpcnd φ log M
99 48 rpne0d φ log M 0
100 96 97 98 99 div12d φ log N log F M log M = log F M log N log M
101 12 oveq2i log F M U = log F M log N log M
102 100 101 eqtr4di φ log N log F M log M = log F M U
103 97 68 mulcomd φ log F M U = U log F M
104 102 103 eqtrd φ log N log F M log M = U log F M
105 95 104 breqtrrd φ log F N log N log F M log M
106 91 48 rerpdivcld φ log F M log M
107 16 nnred φ N
108 15 simprd φ 1 < N
109 107 108 rplogcld φ log N +
110 90 106 109 ledivmuld φ log F N log N log F M log M log F N log N log F M log M
111 105 110 mpbird φ log F N log N log F M log M
112 111 8 10 3brtr4g φ R S
113 75 112 jca φ 1 < F M R S