Metamath Proof Explorer


Theorem ostth2lem3

Description: Lemma for ostth2 . (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
padic.j J=qxifx=00qqpCntx
ostth.k K=xifx=001
ostth.1 φFA
ostth2.2 φN2
ostth2.3 φ1<FN
ostth2.4 R=logFNlogN
ostth2.5 φM2
ostth2.6 S=logFMlogM
ostth2.7 T=ifFM11FM
ostth2.8 U=logNlogM
Assertion ostth2lem3 φXFNTUXXMTU+1

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 padic.j J=qxifx=00qqpCntx
4 ostth.k K=xifx=001
5 ostth.1 φFA
6 ostth2.2 φN2
7 ostth2.3 φ1<FN
8 ostth2.4 R=logFNlogN
9 ostth2.5 φM2
10 ostth2.6 S=logFMlogM
11 ostth2.7 T=ifFM11FM
12 ostth2.8 U=logNlogM
13 eluz2b2 N2N1<N
14 6 13 sylib φN1<N
15 14 simpld φN
16 nnq NN
17 15 16 syl φN
18 1 qrngbas =BaseQ
19 2 18 abvcl FANFN
20 5 17 19 syl2anc φFN
21 20 adantr φXFN
22 21 recnd φXFN
23 1re 1
24 eluz2b2 M2M1<M
25 9 24 sylib φM1<M
26 25 simpld φM
27 nnq MM
28 26 27 syl φM
29 2 18 abvcl FAMFM
30 5 28 29 syl2anc φFM
31 ifcl 1FMifFM11FM
32 23 30 31 sylancr φifFM11FM
33 11 32 eqeltrid φT
34 33 adantr φXT
35 0red φ0
36 1red φ1
37 0lt1 0<1
38 37 a1i φ0<1
39 max2 FM11ifFM11FM
40 30 36 39 syl2anc φ1ifFM11FM
41 40 11 breqtrrdi φ1T
42 35 36 33 38 41 ltletrd φ0<T
43 42 adantr φX0<T
44 34 43 elrpd φXT+
45 44 rpge0d φX0T
46 15 nnred φN
47 14 simprd φ1<N
48 46 47 rplogcld φlogN+
49 26 nnred φM
50 25 simprd φ1<M
51 49 50 rplogcld φlogM+
52 48 51 rpdivcld φlogNlogM+
53 12 52 eqeltrid φU+
54 53 rpred φU
55 54 adantr φXU
56 34 45 55 recxpcld φXTU
57 56 recnd φXTU
58 44 55 rpcxpcld φXTU+
59 58 rpne0d φXTU0
60 nnnn0 XX0
61 60 adantl φXX0
62 22 57 59 61 expdivd φXFNTUX=FNXTUX
63 reexpcl FNX0FNX
64 20 60 63 syl2an φXFNX
65 26 adantr φXM
66 65 nnred φXM
67 nnre XX
68 67 adantl φXX
69 68 55 remulcld φXXU
70 61 nn0ge0d φX0X
71 53 rpge0d φ0U
72 71 adantr φX0U
73 68 55 70 72 mulge0d φX0XU
74 flge0nn0 XU0XUXU0
75 69 73 74 syl2anc φXXU0
76 peano2nn0 XU0XU+10
77 75 76 syl φXXU+10
78 77 nn0red φXXU+1
79 66 78 remulcld φXMXU+1
80 34 77 reexpcld φXTXU+1
81 79 80 remulcld φXMXU+1TXU+1
82 peano2re UU+1
83 55 82 syl φXU+1
84 68 83 remulcld φXXU+1
85 66 84 remulcld φXMXU+1
86 56 61 reexpcld φXTUX
87 86 34 remulcld φXTUXT
88 85 87 remulcld φXMXU+1TUXT
89 1 2 qabvexp FANX0FNX=FNX
90 5 17 60 89 syl2an3an φXFNX=FNX
91 68 recnd φXX
92 48 rpred φlogN
93 92 recnd φlogN
94 93 adantr φXlogN
95 51 rpred φlogM
96 95 recnd φlogM
97 96 adantr φXlogM
98 51 adantr φXlogM+
99 98 rpne0d φXlogM0
100 91 94 97 99 divassd φXXlogNlogM=XlogNlogM
101 12 oveq2i XU=XlogNlogM
102 100 101 eqtr4di φXXlogNlogM=XU
103 102 oveq1d φXXlogNlogMlogM=XUlogM
104 91 94 mulcld φXXlogN
105 104 97 99 divcan1d φXXlogNlogMlogM=XlogN
106 103 105 eqtr3d φXXUlogM=XlogN
107 flltp1 XUXU<XU+1
108 69 107 syl φXXU<XU+1
109 69 78 98 108 ltmul1dd φXXUlogM<XU+1logM
110 106 109 eqbrtrrd φXXlogN<XU+1logM
111 92 adantr φXlogN
112 68 111 remulcld φXXlogN
113 95 adantr φXlogM
114 78 113 remulcld φXXU+1logM
115 eflt XlogNXU+1logMXlogN<XU+1logMeXlogN<eXU+1logM
116 112 114 115 syl2anc φXXlogN<XU+1logMeXlogN<eXU+1logM
117 110 116 mpbid φXeXlogN<eXU+1logM
118 15 nnrpd φN+
119 nnz XX
120 reexplog N+XNX=eXlogN
121 118 119 120 syl2an φXNX=eXlogN
122 65 nnrpd φXM+
123 77 nn0zd φXXU+1
124 reexplog M+XU+1MXU+1=eXU+1logM
125 122 123 124 syl2anc φXMXU+1=eXU+1logM
126 117 121 125 3brtr4d φXNX<MXU+1
127 nnexpcl NX0NX
128 15 60 127 syl2an φXNX
129 65 77 nnexpcld φXMXU+1
130 nnltlem1 NXMXU+1NX<MXU+1NXMXU+11
131 128 129 130 syl2anc φXNX<MXU+1NXMXU+11
132 126 131 mpbid φXNXMXU+11
133 128 nnnn0d φXNX0
134 nn0uz 0=0
135 133 134 eleqtrdi φXNX0
136 129 nnzd φXMXU+1
137 peano2zm MXU+1MXU+11
138 136 137 syl φXMXU+11
139 elfz5 NX0MXU+11NX0MXU+11NXMXU+11
140 135 138 139 syl2anc φXNX0MXU+11NXMXU+11
141 132 140 mpbird φXNX0MXU+11
142 1 2 3 4 5 6 7 8 9 10 11 ostth2lem2 φXU+10NX0MXU+11FNXMXU+1TXU+1
143 142 3expia φXU+10NX0MXU+11FNXMXU+1TXU+1
144 77 143 syldan φXNX0MXU+11FNXMXU+1TXU+1
145 141 144 mpd φXFNXMXU+1TXU+1
146 90 145 eqbrtrrd φXFNXMXU+1TXU+1
147 85 80 remulcld φXMXU+1TXU+1
148 peano2re XUXU+1
149 69 148 syl φXXU+1
150 75 nn0red φXXU
151 1red φX1
152 flle XUXUXU
153 69 152 syl φXXUXU
154 150 69 151 153 leadd1dd φXXU+1XU+1
155 nnge1 X1X
156 155 adantl φX1X
157 151 68 69 156 leadd2dd φXXU+1XU+X
158 55 recnd φXU
159 151 recnd φX1
160 91 158 159 adddid φXXU+1=XU+X1
161 91 mulridd φXX1=X
162 161 oveq2d φXXU+X1=XU+X
163 160 162 eqtrd φXXU+1=XU+X
164 157 163 breqtrrd φXXU+1XU+1
165 78 149 84 154 164 letrd φXXU+1XU+1
166 65 nngt0d φX0<M
167 lemul2 XU+1XU+1M0<MXU+1XU+1MXU+1MXU+1
168 78 84 66 166 167 syl112anc φXXU+1XU+1MXU+1MXU+1
169 165 168 mpbid φXMXU+1MXU+1
170 expgt0 TXU+10<T0<TXU+1
171 34 123 43 170 syl3anc φX0<TXU+1
172 lemul1 MXU+1MXU+1TXU+10<TXU+1MXU+1MXU+1MXU+1TXU+1MXU+1TXU+1
173 79 85 80 171 172 syl112anc φXMXU+1MXU+1MXU+1TXU+1MXU+1TXU+1
174 169 173 mpbid φXMXU+1TXU+1MXU+1TXU+1
175 34 recnd φXT
176 175 75 expp1d φXTXU+1=TXUT
177 41 adantr φX1T
178 remulcl UXUX
179 54 67 178 syl2an φXUX
180 91 158 mulcomd φXXU=UX
181 153 180 breqtrd φXXUUX
182 34 177 150 179 181 cxplead φXTXUTUX
183 cxpexp TXU0TXU=TXU
184 175 75 183 syl2anc φXTXU=TXU
185 44 55 91 cxpmuld φXTUX=TUX
186 cxpexp TUX0TUX=TUX
187 57 61 186 syl2anc φXTUX=TUX
188 185 187 eqtrd φXTUX=TUX
189 182 184 188 3brtr3d φXTXUTUX
190 34 75 reexpcld φXTXU
191 190 86 44 lemul1d φXTXUTUXTXUTTUXT
192 189 191 mpbid φXTXUTTUXT
193 176 192 eqbrtrd φXTXU+1TUXT
194 nngt0 X0<X
195 194 adantl φX0<X
196 0red φX0
197 53 adantr φXU+
198 197 rpgt0d φX0<U
199 55 ltp1d φXU<U+1
200 196 55 83 198 199 lttrd φX0<U+1
201 68 83 195 200 mulgt0d φX0<XU+1
202 66 84 166 201 mulgt0d φX0<MXU+1
203 lemul2 TXU+1TUXTMXU+10<MXU+1TXU+1TUXTMXU+1TXU+1MXU+1TUXT
204 80 87 85 202 203 syl112anc φXTXU+1TUXTMXU+1TXU+1MXU+1TUXT
205 193 204 mpbid φXMXU+1TXU+1MXU+1TUXT
206 81 147 88 174 205 letrd φXMXU+1TXU+1MXU+1TUXT
207 64 81 88 146 206 letrd φXFNXMXU+1TUXT
208 85 recnd φXMXU+1
209 86 recnd φXTUX
210 208 209 175 mul12d φXMXU+1TUXT=TUXMXU+1T
211 66 recnd φXM
212 84 recnd φXXU+1
213 211 212 175 mul32d φXMXU+1T=MTXU+1
214 211 175 mulcld φXMT
215 83 recnd φXU+1
216 214 91 215 mul12d φXMTXU+1=XMTU+1
217 213 216 eqtrd φXMXU+1T=XMTU+1
218 217 oveq2d φXTUXMXU+1T=TUXXMTU+1
219 210 218 eqtrd φXMXU+1TUXT=TUXXMTU+1
220 207 219 breqtrd φXFNXTUXXMTU+1
221 66 34 remulcld φXMT
222 221 83 remulcld φXMTU+1
223 68 222 remulcld φXXMTU+1
224 119 adantl φXX
225 58 224 rpexpcld φXTUX+
226 64 223 225 ledivmuld φXFNXTUXXMTU+1FNXTUXXMTU+1
227 220 226 mpbird φXFNXTUXXMTU+1
228 62 227 eqbrtrd φXFNTUXXMTU+1