Metamath Proof Explorer


Theorem ostth2lem3

Description: Lemma for ostth2 . (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q = fld 𝑠
qabsabv.a A = AbsVal Q
padic.j J = q x if x = 0 0 q q pCnt x
ostth.k K = x if x = 0 0 1
ostth.1 φ F A
ostth2.2 φ N 2
ostth2.3 φ 1 < F N
ostth2.4 R = log F N log N
ostth2.5 φ M 2
ostth2.6 S = log F M log M
ostth2.7 T = if F M 1 1 F M
ostth2.8 U = log N log M
Assertion ostth2lem3 φ X F N T U X X M T U + 1

Proof

Step Hyp Ref Expression
1 qrng.q Q = fld 𝑠
2 qabsabv.a A = AbsVal Q
3 padic.j J = q x if x = 0 0 q q pCnt x
4 ostth.k K = x if x = 0 0 1
5 ostth.1 φ F A
6 ostth2.2 φ N 2
7 ostth2.3 φ 1 < F N
8 ostth2.4 R = log F N log N
9 ostth2.5 φ M 2
10 ostth2.6 S = log F M log M
11 ostth2.7 T = if F M 1 1 F M
12 ostth2.8 U = log N log M
13 eluz2b2 N 2 N 1 < N
14 6 13 sylib φ N 1 < N
15 14 simpld φ N
16 nnq N N
17 15 16 syl φ N
18 1 qrngbas = Base Q
19 2 18 abvcl F A N F N
20 5 17 19 syl2anc φ F N
21 20 adantr φ X F N
22 21 recnd φ X F N
23 1re 1
24 eluz2b2 M 2 M 1 < M
25 9 24 sylib φ M 1 < M
26 25 simpld φ M
27 nnq M M
28 26 27 syl φ M
29 2 18 abvcl F A M F M
30 5 28 29 syl2anc φ F M
31 ifcl 1 F M if F M 1 1 F M
32 23 30 31 sylancr φ if F M 1 1 F M
33 11 32 eqeltrid φ T
34 33 adantr φ X T
35 0red φ 0
36 1red φ 1
37 0lt1 0 < 1
38 37 a1i φ 0 < 1
39 max2 F M 1 1 if F M 1 1 F M
40 30 36 39 syl2anc φ 1 if F M 1 1 F M
41 40 11 breqtrrdi φ 1 T
42 35 36 33 38 41 ltletrd φ 0 < T
43 42 adantr φ X 0 < T
44 34 43 elrpd φ X T +
45 44 rpge0d φ X 0 T
46 15 nnred φ N
47 14 simprd φ 1 < N
48 46 47 rplogcld φ log N +
49 26 nnred φ M
50 25 simprd φ 1 < M
51 49 50 rplogcld φ log M +
52 48 51 rpdivcld φ log N log M +
53 12 52 eqeltrid φ U +
54 53 rpred φ U
55 54 adantr φ X U
56 34 45 55 recxpcld φ X T U
57 56 recnd φ X T U
58 44 55 rpcxpcld φ X T U +
59 58 rpne0d φ X T U 0
60 nnnn0 X X 0
61 60 adantl φ X X 0
62 22 57 59 61 expdivd φ X F N T U X = F N X T U X
63 reexpcl F N X 0 F N X
64 20 60 63 syl2an φ X F N X
65 26 adantr φ X M
66 65 nnred φ X M
67 nnre X X
68 67 adantl φ X X
69 68 55 remulcld φ X X U
70 61 nn0ge0d φ X 0 X
71 53 rpge0d φ 0 U
72 71 adantr φ X 0 U
73 68 55 70 72 mulge0d φ X 0 X U
74 flge0nn0 X U 0 X U X U 0
75 69 73 74 syl2anc φ X X U 0
76 peano2nn0 X U 0 X U + 1 0
77 75 76 syl φ X X U + 1 0
78 77 nn0red φ X X U + 1
79 66 78 remulcld φ X M X U + 1
80 34 77 reexpcld φ X T X U + 1
81 79 80 remulcld φ X M X U + 1 T X U + 1
82 peano2re U U + 1
83 55 82 syl φ X U + 1
84 68 83 remulcld φ X X U + 1
85 66 84 remulcld φ X M X U + 1
86 56 61 reexpcld φ X T U X
87 86 34 remulcld φ X T U X T
88 85 87 remulcld φ X M X U + 1 T U X T
89 1 2 qabvexp F A N X 0 F N X = F N X
90 5 17 60 89 syl2an3an φ X F N X = F N X
91 68 recnd φ X X
92 48 rpred φ log N
93 92 recnd φ log N
94 93 adantr φ X log N
95 51 rpred φ log M
96 95 recnd φ log M
97 96 adantr φ X log M
98 51 adantr φ X log M +
99 98 rpne0d φ X log M 0
100 91 94 97 99 divassd φ X X log N log M = X log N log M
101 12 oveq2i X U = X log N log M
102 100 101 eqtr4di φ X X log N log M = X U
103 102 oveq1d φ X X log N log M log M = X U log M
104 91 94 mulcld φ X X log N
105 104 97 99 divcan1d φ X X log N log M log M = X log N
106 103 105 eqtr3d φ X X U log M = X log N
107 flltp1 X U X U < X U + 1
108 69 107 syl φ X X U < X U + 1
109 69 78 98 108 ltmul1dd φ X X U log M < X U + 1 log M
110 106 109 eqbrtrrd φ X X log N < X U + 1 log M
111 92 adantr φ X log N
112 68 111 remulcld φ X X log N
113 95 adantr φ X log M
114 78 113 remulcld φ X X U + 1 log M
115 eflt X log N X U + 1 log M X log N < X U + 1 log M e X log N < e X U + 1 log M
116 112 114 115 syl2anc φ X X log N < X U + 1 log M e X log N < e X U + 1 log M
117 110 116 mpbid φ X e X log N < e X U + 1 log M
118 15 nnrpd φ N +
119 nnz X X
120 reexplog N + X N X = e X log N
121 118 119 120 syl2an φ X N X = e X log N
122 65 nnrpd φ X M +
123 77 nn0zd φ X X U + 1
124 reexplog M + X U + 1 M X U + 1 = e X U + 1 log M
125 122 123 124 syl2anc φ X M X U + 1 = e X U + 1 log M
126 117 121 125 3brtr4d φ X N X < M X U + 1
127 nnexpcl N X 0 N X
128 15 60 127 syl2an φ X N X
129 65 77 nnexpcld φ X M X U + 1
130 nnltlem1 N X M X U + 1 N X < M X U + 1 N X M X U + 1 1
131 128 129 130 syl2anc φ X N X < M X U + 1 N X M X U + 1 1
132 126 131 mpbid φ X N X M X U + 1 1
133 128 nnnn0d φ X N X 0
134 nn0uz 0 = 0
135 133 134 eleqtrdi φ X N X 0
136 129 nnzd φ X M X U + 1
137 peano2zm M X U + 1 M X U + 1 1
138 136 137 syl φ X M X U + 1 1
139 elfz5 N X 0 M X U + 1 1 N X 0 M X U + 1 1 N X M X U + 1 1
140 135 138 139 syl2anc φ X N X 0 M X U + 1 1 N X M X U + 1 1
141 132 140 mpbird φ X N X 0 M X U + 1 1
142 1 2 3 4 5 6 7 8 9 10 11 ostth2lem2 φ X U + 1 0 N X 0 M X U + 1 1 F N X M X U + 1 T X U + 1
143 142 3expia φ X U + 1 0 N X 0 M X U + 1 1 F N X M X U + 1 T X U + 1
144 77 143 syldan φ X N X 0 M X U + 1 1 F N X M X U + 1 T X U + 1
145 141 144 mpd φ X F N X M X U + 1 T X U + 1
146 90 145 eqbrtrrd φ X F N X M X U + 1 T X U + 1
147 85 80 remulcld φ X M X U + 1 T X U + 1
148 peano2re X U X U + 1
149 69 148 syl φ X X U + 1
150 75 nn0red φ X X U
151 1red φ X 1
152 flle X U X U X U
153 69 152 syl φ X X U X U
154 150 69 151 153 leadd1dd φ X X U + 1 X U + 1
155 nnge1 X 1 X
156 155 adantl φ X 1 X
157 151 68 69 156 leadd2dd φ X X U + 1 X U + X
158 55 recnd φ X U
159 151 recnd φ X 1
160 91 158 159 adddid φ X X U + 1 = X U + X 1
161 91 mulid1d φ X X 1 = X
162 161 oveq2d φ X X U + X 1 = X U + X
163 160 162 eqtrd φ X X U + 1 = X U + X
164 157 163 breqtrrd φ X X U + 1 X U + 1
165 78 149 84 154 164 letrd φ X X U + 1 X U + 1
166 65 nngt0d φ X 0 < M
167 lemul2 X U + 1 X U + 1 M 0 < M X U + 1 X U + 1 M X U + 1 M X U + 1
168 78 84 66 166 167 syl112anc φ X X U + 1 X U + 1 M X U + 1 M X U + 1
169 165 168 mpbid φ X M X U + 1 M X U + 1
170 expgt0 T X U + 1 0 < T 0 < T X U + 1
171 34 123 43 170 syl3anc φ X 0 < T X U + 1
172 lemul1 M X U + 1 M X U + 1 T X U + 1 0 < T X U + 1 M X U + 1 M X U + 1 M X U + 1 T X U + 1 M X U + 1 T X U + 1
173 79 85 80 171 172 syl112anc φ X M X U + 1 M X U + 1 M X U + 1 T X U + 1 M X U + 1 T X U + 1
174 169 173 mpbid φ X M X U + 1 T X U + 1 M X U + 1 T X U + 1
175 34 recnd φ X T
176 175 75 expp1d φ X T X U + 1 = T X U T
177 41 adantr φ X 1 T
178 remulcl U X U X
179 54 67 178 syl2an φ X U X
180 91 158 mulcomd φ X X U = U X
181 153 180 breqtrd φ X X U U X
182 34 177 150 179 181 cxplead φ X T X U T U X
183 cxpexp T X U 0 T X U = T X U
184 175 75 183 syl2anc φ X T X U = T X U
185 44 55 91 cxpmuld φ X T U X = T U X
186 cxpexp T U X 0 T U X = T U X
187 57 61 186 syl2anc φ X T U X = T U X
188 185 187 eqtrd φ X T U X = T U X
189 182 184 188 3brtr3d φ X T X U T U X
190 34 75 reexpcld φ X T X U
191 190 86 44 lemul1d φ X T X U T U X T X U T T U X T
192 189 191 mpbid φ X T X U T T U X T
193 176 192 eqbrtrd φ X T X U + 1 T U X T
194 nngt0 X 0 < X
195 194 adantl φ X 0 < X
196 0red φ X 0
197 53 adantr φ X U +
198 197 rpgt0d φ X 0 < U
199 55 ltp1d φ X U < U + 1
200 196 55 83 198 199 lttrd φ X 0 < U + 1
201 68 83 195 200 mulgt0d φ X 0 < X U + 1
202 66 84 166 201 mulgt0d φ X 0 < M X U + 1
203 lemul2 T X U + 1 T U X T M X U + 1 0 < M X U + 1 T X U + 1 T U X T M X U + 1 T X U + 1 M X U + 1 T U X T
204 80 87 85 202 203 syl112anc φ X T X U + 1 T U X T M X U + 1 T X U + 1 M X U + 1 T U X T
205 193 204 mpbid φ X M X U + 1 T X U + 1 M X U + 1 T U X T
206 81 147 88 174 205 letrd φ X M X U + 1 T X U + 1 M X U + 1 T U X T
207 64 81 88 146 206 letrd φ X F N X M X U + 1 T U X T
208 85 recnd φ X M X U + 1
209 86 recnd φ X T U X
210 208 209 175 mul12d φ X M X U + 1 T U X T = T U X M X U + 1 T
211 66 recnd φ X M
212 84 recnd φ X X U + 1
213 211 212 175 mul32d φ X M X U + 1 T = M T X U + 1
214 211 175 mulcld φ X M T
215 83 recnd φ X U + 1
216 214 91 215 mul12d φ X M T X U + 1 = X M T U + 1
217 213 216 eqtrd φ X M X U + 1 T = X M T U + 1
218 217 oveq2d φ X T U X M X U + 1 T = T U X X M T U + 1
219 210 218 eqtrd φ X M X U + 1 T U X T = T U X X M T U + 1
220 207 219 breqtrd φ X F N X T U X X M T U + 1
221 66 34 remulcld φ X M T
222 221 83 remulcld φ X M T U + 1
223 68 222 remulcld φ X X M T U + 1
224 119 adantl φ X X
225 58 224 rpexpcld φ X T U X +
226 64 223 225 ledivmuld φ X F N X T U X X M T U + 1 F N X T U X X M T U + 1
227 220 226 mpbird φ X F N X T U X X M T U + 1
228 62 227 eqbrtrd φ X F N T U X X M T U + 1