Metamath Proof Explorer


Theorem ostth2lem2

Description: Lemma for ostth2 . (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
padic.j J=qxifx=00qqpCntx
ostth.k K=xifx=001
ostth.1 φFA
ostth2.2 φN2
ostth2.3 φ1<FN
ostth2.4 R=logFNlogN
ostth2.5 φM2
ostth2.6 S=logFMlogM
ostth2.7 T=ifFM11FM
Assertion ostth2lem2 φX0Y0MX1FYMXTX

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 padic.j J=qxifx=00qqpCntx
4 ostth.k K=xifx=001
5 ostth.1 φFA
6 ostth2.2 φN2
7 ostth2.3 φ1<FN
8 ostth2.4 R=logFNlogN
9 ostth2.5 φM2
10 ostth2.6 S=logFMlogM
11 ostth2.7 T=ifFM11FM
12 oveq2 x=0Mx=M0
13 12 oveq1d x=0Mx1=M01
14 13 oveq2d x=00Mx1=0M01
15 oveq2 x=0Mx= M0
16 oveq2 x=0Tx=T0
17 15 16 oveq12d x=0MxTx= M0T0
18 17 breq2d x=0FkMxTxFk M0T0
19 14 18 raleqbidv x=0k0Mx1FkMxTxk0M01Fk M0T0
20 19 imbi2d x=0φk0Mx1FkMxTxφk0M01Fk M0T0
21 oveq2 x=nMx=Mn
22 21 oveq1d x=nMx1=Mn1
23 22 oveq2d x=n0Mx1=0Mn1
24 oveq2 x=nMx=Mn
25 oveq2 x=nTx=Tn
26 24 25 oveq12d x=nMxTx=MnTn
27 26 breq2d x=nFkMxTxFkMnTn
28 23 27 raleqbidv x=nk0Mx1FkMxTxk0Mn1FkMnTn
29 28 imbi2d x=nφk0Mx1FkMxTxφk0Mn1FkMnTn
30 oveq2 x=n+1Mx=Mn+1
31 30 oveq1d x=n+1Mx1=Mn+11
32 31 oveq2d x=n+10Mx1=0Mn+11
33 oveq2 x=n+1Mx=Mn+1
34 oveq2 x=n+1Tx=Tn+1
35 33 34 oveq12d x=n+1MxTx=Mn+1Tn+1
36 35 breq2d x=n+1FkMxTxFkMn+1Tn+1
37 32 36 raleqbidv x=n+1k0Mx1FkMxTxk0Mn+11FkMn+1Tn+1
38 37 imbi2d x=n+1φk0Mx1FkMxTxφk0Mn+11FkMn+1Tn+1
39 oveq2 x=XMx=MX
40 39 oveq1d x=XMx1=MX1
41 40 oveq2d x=X0Mx1=0MX1
42 oveq2 x=XMx=MX
43 oveq2 x=XTx=TX
44 42 43 oveq12d x=XMxTx=MXTX
45 44 breq2d x=XFkMxTxFkMXTX
46 41 45 raleqbidv x=Xk0Mx1FkMxTxk0MX1FkMXTX
47 46 imbi2d x=Xφk0Mx1FkMxTxφk0MX1FkMXTX
48 eluz2nn M2M
49 9 48 syl φM
50 49 nncnd φM
51 50 exp0d φM0=1
52 51 oveq1d φM01=11
53 1m1e0 11=0
54 52 53 eqtrdi φM01=0
55 54 oveq2d φ0M01=00
56 55 eleq2d φk0M01k00
57 0le0 00
58 57 a1i φ00
59 1 qrng0 0=0Q
60 2 59 abv0 FAF0=0
61 5 60 syl φF0=0
62 50 mul01d φ M0=0
63 62 oveq1d φ M0T0=0T0
64 1re 1
65 nnq MM
66 49 65 syl φM
67 1 qrngbas =BaseQ
68 2 67 abvcl FAMFM
69 5 66 68 syl2anc φFM
70 ifcl 1FMifFM11FM
71 64 69 70 sylancr φifFM11FM
72 11 71 eqeltrid φT
73 72 recnd φT
74 0nn0 00
75 expcl T00T0
76 73 74 75 sylancl φT0
77 76 mul02d φ0T0=0
78 63 77 eqtrd φ M0T0=0
79 58 61 78 3brtr4d φF0 M0T0
80 elfz1eq k00k=0
81 80 fveq2d k00Fk=F0
82 81 breq1d k00Fk M0T0F0 M0T0
83 79 82 syl5ibrcom φk00Fk M0T0
84 56 83 sylbid φk0M01Fk M0T0
85 84 ralrimiv φk0M01Fk M0T0
86 fveq2 k=jFk=Fj
87 86 breq1d k=jFkMnTnFjMnTn
88 87 cbvralvw k0Mn1FkMnTnj0Mn1FjMnTn
89 5 ad2antrr φn0k0Mn+11j0Mn1FjMnTnFA
90 elfzelz k0Mn+11k
91 90 ad2antrl φn0k0Mn+11j0Mn1FjMnTnk
92 zq kk
93 91 92 syl φn0k0Mn+11j0Mn1FjMnTnk
94 2 67 abvcl FAkFk
95 89 93 94 syl2anc φn0k0Mn+11j0Mn1FjMnTnFk
96 49 ad2antrr φn0k0Mn+11j0Mn1FjMnTnM
97 simplr φn0k0Mn+11j0Mn1FjMnTnn0
98 96 97 nnexpcld φn0k0Mn+11j0Mn1FjMnTnMn
99 91 98 zmodcld φn0k0Mn+11j0Mn1FjMnTnkmodMn0
100 99 nn0zd φn0k0Mn+11j0Mn1FjMnTnkmodMn
101 zq kmodMnkmodMn
102 100 101 syl φn0k0Mn+11j0Mn1FjMnTnkmodMn
103 2 67 abvcl FAkmodMnFkmodMn
104 89 102 103 syl2anc φn0k0Mn+11j0Mn1FjMnTnFkmodMn
105 96 65 syl φn0k0Mn+11j0Mn1FjMnTnM
106 89 105 68 syl2anc φn0k0Mn+11j0Mn1FjMnTnFM
107 106 97 reexpcld φn0k0Mn+11j0Mn1FjMnTnFMn
108 91 zred φn0k0Mn+11j0Mn1FjMnTnk
109 108 98 nndivred φn0k0Mn+11j0Mn1FjMnTnkMn
110 109 flcld φn0k0Mn+11j0Mn1FjMnTnkMn
111 zq kMnkMn
112 110 111 syl φn0k0Mn+11j0Mn1FjMnTnkMn
113 2 67 abvcl FAkMnFkMn
114 89 112 113 syl2anc φn0k0Mn+11j0Mn1FjMnTnFkMn
115 107 114 remulcld φn0k0Mn+11j0Mn1FjMnTnFMnFkMn
116 104 115 readdcld φn0k0Mn+11j0Mn1FjMnTnFkmodMn+FMnFkMn
117 96 nnred φn0k0Mn+11j0Mn1FjMnTnM
118 nn0p1nn n0n+1
119 118 ad2antlr φn0k0Mn+11j0Mn1FjMnTnn+1
120 119 nnred φn0k0Mn+11j0Mn1FjMnTnn+1
121 117 120 remulcld φn0k0Mn+11j0Mn1FjMnTnMn+1
122 72 ad2antrr φn0k0Mn+11j0Mn1FjMnTnT
123 peano2nn0 n0n+10
124 123 ad2antlr φn0k0Mn+11j0Mn1FjMnTnn+10
125 122 124 reexpcld φn0k0Mn+11j0Mn1FjMnTnTn+1
126 121 125 remulcld φn0k0Mn+11j0Mn1FjMnTnMn+1Tn+1
127 nnq MnMn
128 98 127 syl φn0k0Mn+11j0Mn1FjMnTnMn
129 qmulcl MnkMnMnkMn
130 128 112 129 syl2anc φn0k0Mn+11j0Mn1FjMnTnMnkMn
131 qex V
132 cnfldadd +=+fld
133 1 132 ressplusg V+=+Q
134 131 133 ax-mp +=+Q
135 2 67 134 abvtri FAkmodMnMnkMnFkmodMn+MnkMnFkmodMn+FMnkMn
136 89 102 130 135 syl3anc φn0k0Mn+11j0Mn1FjMnTnFkmodMn+MnkMnFkmodMn+FMnkMn
137 98 nnrpd φn0k0Mn+11j0Mn1FjMnTnMn+
138 modval kMn+kmodMn=kMnkMn
139 108 137 138 syl2anc φn0k0Mn+11j0Mn1FjMnTnkmodMn=kMnkMn
140 139 oveq1d φn0k0Mn+11j0Mn1FjMnTnkmodMn+MnkMn=k-MnkMn+MnkMn
141 108 recnd φn0k0Mn+11j0Mn1FjMnTnk
142 qcn MnkMnMnkMn
143 130 142 syl φn0k0Mn+11j0Mn1FjMnTnMnkMn
144 141 143 npcand φn0k0Mn+11j0Mn1FjMnTnk-MnkMn+MnkMn=k
145 140 144 eqtrd φn0k0Mn+11j0Mn1FjMnTnkmodMn+MnkMn=k
146 145 fveq2d φn0k0Mn+11j0Mn1FjMnTnFkmodMn+MnkMn=Fk
147 cnfldmul ×=fld
148 1 147 ressmulr V×=Q
149 131 148 ax-mp ×=Q
150 2 67 149 abvmul FAMnkMnFMnkMn=FMnFkMn
151 89 128 112 150 syl3anc φn0k0Mn+11j0Mn1FjMnTnFMnkMn=FMnFkMn
152 1 2 qabvexp FAMn0FMn=FMn
153 89 105 97 152 syl3anc φn0k0Mn+11j0Mn1FjMnTnFMn=FMn
154 153 oveq1d φn0k0Mn+11j0Mn1FjMnTnFMnFkMn=FMnFkMn
155 151 154 eqtrd φn0k0Mn+11j0Mn1FjMnTnFMnkMn=FMnFkMn
156 155 oveq2d φn0k0Mn+11j0Mn1FjMnTnFkmodMn+FMnkMn=FkmodMn+FMnFkMn
157 136 146 156 3brtr3d φn0k0Mn+11j0Mn1FjMnTnFkFkmodMn+FMnFkMn
158 122 97 reexpcld φn0k0Mn+11j0Mn1FjMnTnTn
159 121 158 remulcld φn0k0Mn+11j0Mn1FjMnTnMn+1Tn
160 nn0re n0n
161 160 ad2antlr φn0k0Mn+11j0Mn1FjMnTnn
162 117 161 remulcld φn0k0Mn+11j0Mn1FjMnTnMn
163 162 158 remulcld φn0k0Mn+11j0Mn1FjMnTnMnTn
164 117 158 remulcld φn0k0Mn+11j0Mn1FjMnTnMTn
165 fveq2 j=kmodMnFj=FkmodMn
166 165 breq1d j=kmodMnFjMnTnFkmodMnMnTn
167 simprr φn0k0Mn+11j0Mn1FjMnTnj0Mn1FjMnTn
168 zmodfz kMnkmodMn0Mn1
169 91 98 168 syl2anc φn0k0Mn+11j0Mn1FjMnTnkmodMn0Mn1
170 166 167 169 rspcdva φn0k0Mn+11j0Mn1FjMnTnFkmodMnMnTn
171 117 107 remulcld φn0k0Mn+11j0Mn1FjMnTnMFMn
172 107 recnd φn0k0Mn+11j0Mn1FjMnTnFMn
173 114 recnd φn0k0Mn+11j0Mn1FjMnTnFkMn
174 172 173 mulcomd φn0k0Mn+11j0Mn1FjMnTnFMnFkMn=FkMnFMn
175 2 67 abvge0 FAM0FM
176 89 105 175 syl2anc φn0k0Mn+11j0Mn1FjMnTn0FM
177 106 97 176 expge0d φn0k0Mn+11j0Mn1FjMnTn0FMn
178 110 zred φn0k0Mn+11j0Mn1FjMnTnkMn
179 elfzle1 k0Mn+110k
180 179 ad2antrl φn0k0Mn+11j0Mn1FjMnTn0k
181 98 nnred φn0k0Mn+11j0Mn1FjMnTnMn
182 98 nngt0d φn0k0Mn+11j0Mn1FjMnTn0<Mn
183 divge0 k0kMn0<Mn0kMn
184 108 180 181 182 183 syl22anc φn0k0Mn+11j0Mn1FjMnTn0kMn
185 flge0nn0 kMn0kMnkMn0
186 109 184 185 syl2anc φn0k0Mn+11j0Mn1FjMnTnkMn0
187 1 2 qabvle FAkMn0FkMnkMn
188 89 186 187 syl2anc φn0k0Mn+11j0Mn1FjMnTnFkMnkMn
189 simprl φn0k0Mn+11j0Mn1FjMnTnk0Mn+11
190 0z 0
191 96 124 nnexpcld φn0k0Mn+11j0Mn1FjMnTnMn+1
192 191 nnzd φn0k0Mn+11j0Mn1FjMnTnMn+1
193 elfzm11 0Mn+1k0Mn+11k0kk<Mn+1
194 190 192 193 sylancr φn0k0Mn+11j0Mn1FjMnTnk0Mn+11k0kk<Mn+1
195 189 194 mpbid φn0k0Mn+11j0Mn1FjMnTnk0kk<Mn+1
196 195 simp3d φn0k0Mn+11j0Mn1FjMnTnk<Mn+1
197 96 nncnd φn0k0Mn+11j0Mn1FjMnTnM
198 197 97 expp1d φn0k0Mn+11j0Mn1FjMnTnMn+1=Mn M
199 196 198 breqtrd φn0k0Mn+11j0Mn1FjMnTnk<Mn M
200 ltdivmul kMMn0<MnkMn<Mk<Mn M
201 108 117 181 182 200 syl112anc φn0k0Mn+11j0Mn1FjMnTnkMn<Mk<Mn M
202 199 201 mpbird φn0k0Mn+11j0Mn1FjMnTnkMn<M
203 96 nnzd φn0k0Mn+11j0Mn1FjMnTnM
204 fllt kMnMkMn<MkMn<M
205 109 203 204 syl2anc φn0k0Mn+11j0Mn1FjMnTnkMn<MkMn<M
206 202 205 mpbid φn0k0Mn+11j0Mn1FjMnTnkMn<M
207 178 117 206 ltled φn0k0Mn+11j0Mn1FjMnTnkMnM
208 114 178 117 188 207 letrd φn0k0Mn+11j0Mn1FjMnTnFkMnM
209 114 117 107 177 208 lemul1ad φn0k0Mn+11j0Mn1FjMnTnFkMnFMnMFMn
210 174 209 eqbrtrd φn0k0Mn+11j0Mn1FjMnTnFMnFkMnMFMn
211 96 nnnn0d φn0k0Mn+11j0Mn1FjMnTnM0
212 211 nn0ge0d φn0k0Mn+11j0Mn1FjMnTn0M
213 max1 FM1FMifFM11FM
214 106 64 213 sylancl φn0k0Mn+11j0Mn1FjMnTnFMifFM11FM
215 214 11 breqtrrdi φn0k0Mn+11j0Mn1FjMnTnFMT
216 leexp1a FMTn00FMFMTFMnTn
217 106 122 97 176 215 216 syl32anc φn0k0Mn+11j0Mn1FjMnTnFMnTn
218 107 158 117 212 217 lemul2ad φn0k0Mn+11j0Mn1FjMnTnMFMnMTn
219 115 171 164 210 218 letrd φn0k0Mn+11j0Mn1FjMnTnFMnFkMnMTn
220 104 115 163 164 170 219 le2addd φn0k0Mn+11j0Mn1FjMnTnFkmodMn+FMnFkMnMnTn+MTn
221 nn0cn n0n
222 221 ad2antlr φn0k0Mn+11j0Mn1FjMnTnn
223 1cnd φn0k0Mn+11j0Mn1FjMnTn1
224 197 222 223 adddid φn0k0Mn+11j0Mn1FjMnTnMn+1=Mn+ M1
225 197 mulridd φn0k0Mn+11j0Mn1FjMnTn M1=M
226 225 oveq2d φn0k0Mn+11j0Mn1FjMnTnMn+ M1=Mn+M
227 224 226 eqtrd φn0k0Mn+11j0Mn1FjMnTnMn+1=Mn+M
228 227 oveq1d φn0k0Mn+11j0Mn1FjMnTnMn+1Tn=Mn+MTn
229 197 222 mulcld φn0k0Mn+11j0Mn1FjMnTnMn
230 158 recnd φn0k0Mn+11j0Mn1FjMnTnTn
231 229 197 230 adddird φn0k0Mn+11j0Mn1FjMnTnMn+MTn=MnTn+MTn
232 228 231 eqtrd φn0k0Mn+11j0Mn1FjMnTnMn+1Tn=MnTn+MTn
233 220 232 breqtrrd φn0k0Mn+11j0Mn1FjMnTnFkmodMn+FMnFkMnMn+1Tn
234 max2 FM11ifFM11FM
235 106 64 234 sylancl φn0k0Mn+11j0Mn1FjMnTn1ifFM11FM
236 235 11 breqtrrdi φn0k0Mn+11j0Mn1FjMnTn1T
237 nn0z n0n
238 237 ad2antlr φn0k0Mn+11j0Mn1FjMnTnn
239 uzid nnn
240 238 239 syl φn0k0Mn+11j0Mn1FjMnTnnn
241 peano2uz nnn+1n
242 240 241 syl φn0k0Mn+11j0Mn1FjMnTnn+1n
243 122 236 242 leexp2ad φn0k0Mn+11j0Mn1FjMnTnTnTn+1
244 96 119 nnmulcld φn0k0Mn+11j0Mn1FjMnTnMn+1
245 244 nngt0d φn0k0Mn+11j0Mn1FjMnTn0<Mn+1
246 lemul2 TnTn+1Mn+10<Mn+1TnTn+1Mn+1TnMn+1Tn+1
247 158 125 121 245 246 syl112anc φn0k0Mn+11j0Mn1FjMnTnTnTn+1Mn+1TnMn+1Tn+1
248 243 247 mpbid φn0k0Mn+11j0Mn1FjMnTnMn+1TnMn+1Tn+1
249 116 159 126 233 248 letrd φn0k0Mn+11j0Mn1FjMnTnFkmodMn+FMnFkMnMn+1Tn+1
250 95 116 126 157 249 letrd φn0k0Mn+11j0Mn1FjMnTnFkMn+1Tn+1
251 250 expr φn0k0Mn+11j0Mn1FjMnTnFkMn+1Tn+1
252 251 ralrimdva φn0j0Mn1FjMnTnk0Mn+11FkMn+1Tn+1
253 88 252 biimtrid φn0k0Mn1FkMnTnk0Mn+11FkMn+1Tn+1
254 253 expcom n0φk0Mn1FkMnTnk0Mn+11FkMn+1Tn+1
255 254 a2d n0φk0Mn1FkMnTnφk0Mn+11FkMn+1Tn+1
256 20 29 38 47 85 255 nn0ind X0φk0MX1FkMXTX
257 256 impcom φX0k0MX1FkMXTX
258 fveq2 k=YFk=FY
259 258 breq1d k=YFkMXTXFYMXTX
260 259 rspccv k0MX1FkMXTXY0MX1FYMXTX
261 257 260 syl φX0Y0MX1FYMXTX
262 261 3impia φX0Y0MX1FYMXTX