| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
|
| 2 |
|
qabsabv.a |
|
| 3 |
|
fveq2 |
|
| 4 |
|
id |
|
| 5 |
3 4
|
breq12d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
fveq2 |
|
| 8 |
|
id |
|
| 9 |
7 8
|
breq12d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
fveq2 |
|
| 12 |
|
id |
|
| 13 |
11 12
|
breq12d |
|
| 14 |
13
|
imbi2d |
|
| 15 |
|
fveq2 |
|
| 16 |
|
id |
|
| 17 |
15 16
|
breq12d |
|
| 18 |
17
|
imbi2d |
|
| 19 |
1
|
qrng0 |
|
| 20 |
2 19
|
abv0 |
|
| 21 |
|
0le0 |
|
| 22 |
20 21
|
eqbrtrdi |
|
| 23 |
|
nn0p1nn |
|
| 24 |
23
|
ad2antrl |
|
| 25 |
|
nnq |
|
| 26 |
24 25
|
syl |
|
| 27 |
1
|
qrngbas |
|
| 28 |
2 27
|
abvcl |
|
| 29 |
26 28
|
syldan |
|
| 30 |
|
nn0z |
|
| 31 |
30
|
ad2antrl |
|
| 32 |
|
zq |
|
| 33 |
31 32
|
syl |
|
| 34 |
2 27
|
abvcl |
|
| 35 |
33 34
|
syldan |
|
| 36 |
|
peano2re |
|
| 37 |
35 36
|
syl |
|
| 38 |
31
|
zred |
|
| 39 |
|
peano2re |
|
| 40 |
38 39
|
syl |
|
| 41 |
|
simpl |
|
| 42 |
|
1z |
|
| 43 |
|
zq |
|
| 44 |
42 43
|
mp1i |
|
| 45 |
|
qex |
|
| 46 |
|
cnfldadd |
|
| 47 |
1 46
|
ressplusg |
|
| 48 |
45 47
|
ax-mp |
|
| 49 |
2 27 48
|
abvtri |
|
| 50 |
41 33 44 49
|
syl3anc |
|
| 51 |
|
ax-1ne0 |
|
| 52 |
1
|
qrng1 |
|
| 53 |
2 52 19
|
abv1z |
|
| 54 |
51 53
|
mpan2 |
|
| 55 |
54
|
adantr |
|
| 56 |
55
|
oveq2d |
|
| 57 |
50 56
|
breqtrd |
|
| 58 |
|
1red |
|
| 59 |
|
simprr |
|
| 60 |
35 38 58 59
|
leadd1dd |
|
| 61 |
29 37 40 57 60
|
letrd |
|
| 62 |
61
|
expr |
|
| 63 |
62
|
expcom |
|
| 64 |
63
|
a2d |
|
| 65 |
6 10 14 18 22 64
|
nn0ind |
|
| 66 |
65
|
impcom |
|