Metamath Proof Explorer


Theorem qabvle

Description: By using induction on N , we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q = fld 𝑠
qabsabv.a A = AbsVal Q
Assertion qabvle F A N 0 F N N

Proof

Step Hyp Ref Expression
1 qrng.q Q = fld 𝑠
2 qabsabv.a A = AbsVal Q
3 fveq2 k = 0 F k = F 0
4 id k = 0 k = 0
5 3 4 breq12d k = 0 F k k F 0 0
6 5 imbi2d k = 0 F A F k k F A F 0 0
7 fveq2 k = n F k = F n
8 id k = n k = n
9 7 8 breq12d k = n F k k F n n
10 9 imbi2d k = n F A F k k F A F n n
11 fveq2 k = n + 1 F k = F n + 1
12 id k = n + 1 k = n + 1
13 11 12 breq12d k = n + 1 F k k F n + 1 n + 1
14 13 imbi2d k = n + 1 F A F k k F A F n + 1 n + 1
15 fveq2 k = N F k = F N
16 id k = N k = N
17 15 16 breq12d k = N F k k F N N
18 17 imbi2d k = N F A F k k F A F N N
19 1 qrng0 0 = 0 Q
20 2 19 abv0 F A F 0 = 0
21 0le0 0 0
22 20 21 eqbrtrdi F A F 0 0
23 nn0p1nn n 0 n + 1
24 23 ad2antrl F A n 0 F n n n + 1
25 nnq n + 1 n + 1
26 24 25 syl F A n 0 F n n n + 1
27 1 qrngbas = Base Q
28 2 27 abvcl F A n + 1 F n + 1
29 26 28 syldan F A n 0 F n n F n + 1
30 nn0z n 0 n
31 30 ad2antrl F A n 0 F n n n
32 zq n n
33 31 32 syl F A n 0 F n n n
34 2 27 abvcl F A n F n
35 33 34 syldan F A n 0 F n n F n
36 peano2re F n F n + 1
37 35 36 syl F A n 0 F n n F n + 1
38 31 zred F A n 0 F n n n
39 peano2re n n + 1
40 38 39 syl F A n 0 F n n n + 1
41 simpl F A n 0 F n n F A
42 1z 1
43 zq 1 1
44 42 43 mp1i F A n 0 F n n 1
45 qex V
46 cnfldadd + = + fld
47 1 46 ressplusg V + = + Q
48 45 47 ax-mp + = + Q
49 2 27 48 abvtri F A n 1 F n + 1 F n + F 1
50 41 33 44 49 syl3anc F A n 0 F n n F n + 1 F n + F 1
51 ax-1ne0 1 0
52 1 qrng1 1 = 1 Q
53 2 52 19 abv1z F A 1 0 F 1 = 1
54 51 53 mpan2 F A F 1 = 1
55 54 adantr F A n 0 F n n F 1 = 1
56 55 oveq2d F A n 0 F n n F n + F 1 = F n + 1
57 50 56 breqtrd F A n 0 F n n F n + 1 F n + 1
58 1red F A n 0 F n n 1
59 simprr F A n 0 F n n F n n
60 35 38 58 59 leadd1dd F A n 0 F n n F n + 1 n + 1
61 29 37 40 57 60 letrd F A n 0 F n n F n + 1 n + 1
62 61 expr F A n 0 F n n F n + 1 n + 1
63 62 expcom n 0 F A F n n F n + 1 n + 1
64 63 a2d n 0 F A F n n F A F n + 1 n + 1
65 6 10 14 18 22 64 nn0ind N 0 F A F N N
66 65 impcom F A N 0 F N N