Metamath Proof Explorer


Theorem qabvexp

Description: Induct the product rule abvmul to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q = fld 𝑠
qabsabv.a A = AbsVal Q
Assertion qabvexp F A M N 0 F M N = F M N

Proof

Step Hyp Ref Expression
1 qrng.q Q = fld 𝑠
2 qabsabv.a A = AbsVal Q
3 oveq2 k = 0 M k = M 0
4 3 fveq2d k = 0 F M k = F M 0
5 oveq2 k = 0 F M k = F M 0
6 4 5 eqeq12d k = 0 F M k = F M k F M 0 = F M 0
7 6 imbi2d k = 0 F A M F M k = F M k F A M F M 0 = F M 0
8 oveq2 k = n M k = M n
9 8 fveq2d k = n F M k = F M n
10 oveq2 k = n F M k = F M n
11 9 10 eqeq12d k = n F M k = F M k F M n = F M n
12 11 imbi2d k = n F A M F M k = F M k F A M F M n = F M n
13 oveq2 k = n + 1 M k = M n + 1
14 13 fveq2d k = n + 1 F M k = F M n + 1
15 oveq2 k = n + 1 F M k = F M n + 1
16 14 15 eqeq12d k = n + 1 F M k = F M k F M n + 1 = F M n + 1
17 16 imbi2d k = n + 1 F A M F M k = F M k F A M F M n + 1 = F M n + 1
18 oveq2 k = N M k = M N
19 18 fveq2d k = N F M k = F M N
20 oveq2 k = N F M k = F M N
21 19 20 eqeq12d k = N F M k = F M k F M N = F M N
22 21 imbi2d k = N F A M F M k = F M k F A M F M N = F M N
23 ax-1ne0 1 0
24 1 qrng1 1 = 1 Q
25 1 qrng0 0 = 0 Q
26 2 24 25 abv1z F A 1 0 F 1 = 1
27 23 26 mpan2 F A F 1 = 1
28 27 adantr F A M F 1 = 1
29 qcn M M
30 29 adantl F A M M
31 30 exp0d F A M M 0 = 1
32 31 fveq2d F A M F M 0 = F 1
33 1 qrngbas = Base Q
34 2 33 abvcl F A M F M
35 34 recnd F A M F M
36 35 exp0d F A M F M 0 = 1
37 28 32 36 3eqtr4d F A M F M 0 = F M 0
38 oveq1 F M n = F M n F M n F M = F M n F M
39 expp1 M n 0 M n + 1 = M n M
40 30 39 sylan F A M n 0 M n + 1 = M n M
41 40 fveq2d F A M n 0 F M n + 1 = F M n M
42 simpll F A M n 0 F A
43 qexpcl M n 0 M n
44 43 adantll F A M n 0 M n
45 simplr F A M n 0 M
46 qex V
47 cnfldmul × = fld
48 1 47 ressmulr V × = Q
49 46 48 ax-mp × = Q
50 2 33 49 abvmul F A M n M F M n M = F M n F M
51 42 44 45 50 syl3anc F A M n 0 F M n M = F M n F M
52 41 51 eqtrd F A M n 0 F M n + 1 = F M n F M
53 expp1 F M n 0 F M n + 1 = F M n F M
54 35 53 sylan F A M n 0 F M n + 1 = F M n F M
55 52 54 eqeq12d F A M n 0 F M n + 1 = F M n + 1 F M n F M = F M n F M
56 38 55 syl5ibr F A M n 0 F M n = F M n F M n + 1 = F M n + 1
57 56 expcom n 0 F A M F M n = F M n F M n + 1 = F M n + 1
58 57 a2d n 0 F A M F M n = F M n F A M F M n + 1 = F M n + 1
59 7 12 17 22 37 58 nn0ind N 0 F A M F M N = F M N
60 59 com12 F A M N 0 F M N = F M N
61 60 3impia F A M N 0 F M N = F M N