Description: Induct the product rule abvmul to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qrng.q | |
|
qabsabv.a | |
||
Assertion | qabvexp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qrng.q | |
|
2 | qabsabv.a | |
|
3 | oveq2 | |
|
4 | 3 | fveq2d | |
5 | oveq2 | |
|
6 | 4 5 | eqeq12d | |
7 | 6 | imbi2d | |
8 | oveq2 | |
|
9 | 8 | fveq2d | |
10 | oveq2 | |
|
11 | 9 10 | eqeq12d | |
12 | 11 | imbi2d | |
13 | oveq2 | |
|
14 | 13 | fveq2d | |
15 | oveq2 | |
|
16 | 14 15 | eqeq12d | |
17 | 16 | imbi2d | |
18 | oveq2 | |
|
19 | 18 | fveq2d | |
20 | oveq2 | |
|
21 | 19 20 | eqeq12d | |
22 | 21 | imbi2d | |
23 | ax-1ne0 | |
|
24 | 1 | qrng1 | |
25 | 1 | qrng0 | |
26 | 2 24 25 | abv1z | |
27 | 23 26 | mpan2 | |
28 | 27 | adantr | |
29 | qcn | |
|
30 | 29 | adantl | |
31 | 30 | exp0d | |
32 | 31 | fveq2d | |
33 | 1 | qrngbas | |
34 | 2 33 | abvcl | |
35 | 34 | recnd | |
36 | 35 | exp0d | |
37 | 28 32 36 | 3eqtr4d | |
38 | oveq1 | |
|
39 | expp1 | |
|
40 | 30 39 | sylan | |
41 | 40 | fveq2d | |
42 | simpll | |
|
43 | qexpcl | |
|
44 | 43 | adantll | |
45 | simplr | |
|
46 | qex | |
|
47 | cnfldmul | |
|
48 | 1 47 | ressmulr | |
49 | 46 48 | ax-mp | |
50 | 2 33 49 | abvmul | |
51 | 42 44 45 50 | syl3anc | |
52 | 41 51 | eqtrd | |
53 | expp1 | |
|
54 | 35 53 | sylan | |
55 | 52 54 | eqeq12d | |
56 | 38 55 | imbitrrid | |
57 | 56 | expcom | |
58 | 57 | a2d | |
59 | 7 12 17 22 37 58 | nn0ind | |
60 | 59 | com12 | |
61 | 60 | 3impia | |