| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
|
| 2 |
|
qabsabv.a |
|
| 3 |
|
oveq2 |
|
| 4 |
3
|
fveq2d |
|
| 5 |
|
oveq2 |
|
| 6 |
4 5
|
eqeq12d |
|
| 7 |
6
|
imbi2d |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
fveq2d |
|
| 10 |
|
oveq2 |
|
| 11 |
9 10
|
eqeq12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
oveq2 |
|
| 16 |
14 15
|
eqeq12d |
|
| 17 |
16
|
imbi2d |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
fveq2d |
|
| 20 |
|
oveq2 |
|
| 21 |
19 20
|
eqeq12d |
|
| 22 |
21
|
imbi2d |
|
| 23 |
|
ax-1ne0 |
|
| 24 |
1
|
qrng1 |
|
| 25 |
1
|
qrng0 |
|
| 26 |
2 24 25
|
abv1z |
|
| 27 |
23 26
|
mpan2 |
|
| 28 |
27
|
adantr |
|
| 29 |
|
qcn |
|
| 30 |
29
|
adantl |
|
| 31 |
30
|
exp0d |
|
| 32 |
31
|
fveq2d |
|
| 33 |
1
|
qrngbas |
|
| 34 |
2 33
|
abvcl |
|
| 35 |
34
|
recnd |
|
| 36 |
35
|
exp0d |
|
| 37 |
28 32 36
|
3eqtr4d |
|
| 38 |
|
oveq1 |
|
| 39 |
|
expp1 |
|
| 40 |
30 39
|
sylan |
|
| 41 |
40
|
fveq2d |
|
| 42 |
|
simpll |
|
| 43 |
|
qexpcl |
|
| 44 |
43
|
adantll |
|
| 45 |
|
simplr |
|
| 46 |
|
qex |
|
| 47 |
|
cnfldmul |
|
| 48 |
1 47
|
ressmulr |
|
| 49 |
46 48
|
ax-mp |
|
| 50 |
2 33 49
|
abvmul |
|
| 51 |
42 44 45 50
|
syl3anc |
|
| 52 |
41 51
|
eqtrd |
|
| 53 |
|
expp1 |
|
| 54 |
35 53
|
sylan |
|
| 55 |
52 54
|
eqeq12d |
|
| 56 |
38 55
|
imbitrrid |
|
| 57 |
56
|
expcom |
|
| 58 |
57
|
a2d |
|
| 59 |
7 12 17 22 37 58
|
nn0ind |
|
| 60 |
59
|
com12 |
|
| 61 |
60
|
3impia |
|