Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
|
2 |
|
qabsabv.a |
|
3 |
|
oveq2 |
|
4 |
3
|
fveq2d |
|
5 |
|
oveq2 |
|
6 |
4 5
|
eqeq12d |
|
7 |
6
|
imbi2d |
|
8 |
|
oveq2 |
|
9 |
8
|
fveq2d |
|
10 |
|
oveq2 |
|
11 |
9 10
|
eqeq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
13
|
fveq2d |
|
15 |
|
oveq2 |
|
16 |
14 15
|
eqeq12d |
|
17 |
16
|
imbi2d |
|
18 |
|
oveq2 |
|
19 |
18
|
fveq2d |
|
20 |
|
oveq2 |
|
21 |
19 20
|
eqeq12d |
|
22 |
21
|
imbi2d |
|
23 |
|
ax-1ne0 |
|
24 |
1
|
qrng1 |
|
25 |
1
|
qrng0 |
|
26 |
2 24 25
|
abv1z |
|
27 |
23 26
|
mpan2 |
|
28 |
27
|
adantr |
|
29 |
|
qcn |
|
30 |
29
|
adantl |
|
31 |
30
|
exp0d |
|
32 |
31
|
fveq2d |
|
33 |
1
|
qrngbas |
|
34 |
2 33
|
abvcl |
|
35 |
34
|
recnd |
|
36 |
35
|
exp0d |
|
37 |
28 32 36
|
3eqtr4d |
|
38 |
|
oveq1 |
|
39 |
|
expp1 |
|
40 |
30 39
|
sylan |
|
41 |
40
|
fveq2d |
|
42 |
|
simpll |
|
43 |
|
qexpcl |
|
44 |
43
|
adantll |
|
45 |
|
simplr |
|
46 |
|
qex |
|
47 |
|
cnfldmul |
|
48 |
1 47
|
ressmulr |
|
49 |
46 48
|
ax-mp |
|
50 |
2 33 49
|
abvmul |
|
51 |
42 44 45 50
|
syl3anc |
|
52 |
41 51
|
eqtrd |
|
53 |
|
expp1 |
|
54 |
35 53
|
sylan |
|
55 |
52 54
|
eqeq12d |
|
56 |
38 55
|
syl5ibr |
|
57 |
56
|
expcom |
|
58 |
57
|
a2d |
|
59 |
7 12 17 22 37 58
|
nn0ind |
|
60 |
59
|
com12 |
|
61 |
60
|
3impia |
|