Metamath Proof Explorer


Theorem qabvexp

Description: Induct the product rule abvmul to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
Assertion qabvexp FAMN0FMN=FMN

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 oveq2 k=0Mk=M0
4 3 fveq2d k=0FMk=FM0
5 oveq2 k=0FMk=FM0
6 4 5 eqeq12d k=0FMk=FMkFM0=FM0
7 6 imbi2d k=0FAMFMk=FMkFAMFM0=FM0
8 oveq2 k=nMk=Mn
9 8 fveq2d k=nFMk=FMn
10 oveq2 k=nFMk=FMn
11 9 10 eqeq12d k=nFMk=FMkFMn=FMn
12 11 imbi2d k=nFAMFMk=FMkFAMFMn=FMn
13 oveq2 k=n+1Mk=Mn+1
14 13 fveq2d k=n+1FMk=FMn+1
15 oveq2 k=n+1FMk=FMn+1
16 14 15 eqeq12d k=n+1FMk=FMkFMn+1=FMn+1
17 16 imbi2d k=n+1FAMFMk=FMkFAMFMn+1=FMn+1
18 oveq2 k=NMk=MN
19 18 fveq2d k=NFMk=FMN
20 oveq2 k=NFMk=FMN
21 19 20 eqeq12d k=NFMk=FMkFMN=FMN
22 21 imbi2d k=NFAMFMk=FMkFAMFMN=FMN
23 ax-1ne0 10
24 1 qrng1 1=1Q
25 1 qrng0 0=0Q
26 2 24 25 abv1z FA10F1=1
27 23 26 mpan2 FAF1=1
28 27 adantr FAMF1=1
29 qcn MM
30 29 adantl FAMM
31 30 exp0d FAMM0=1
32 31 fveq2d FAMFM0=F1
33 1 qrngbas =BaseQ
34 2 33 abvcl FAMFM
35 34 recnd FAMFM
36 35 exp0d FAMFM0=1
37 28 32 36 3eqtr4d FAMFM0=FM0
38 oveq1 FMn=FMnFMnFM=FMnFM
39 expp1 Mn0Mn+1=Mn M
40 30 39 sylan FAMn0Mn+1=Mn M
41 40 fveq2d FAMn0FMn+1=FMn M
42 simpll FAMn0FA
43 qexpcl Mn0Mn
44 43 adantll FAMn0Mn
45 simplr FAMn0M
46 qex V
47 cnfldmul ×=fld
48 1 47 ressmulr V×=Q
49 46 48 ax-mp ×=Q
50 2 33 49 abvmul FAMnMFMn M=FMnFM
51 42 44 45 50 syl3anc FAMn0FMn M=FMnFM
52 41 51 eqtrd FAMn0FMn+1=FMnFM
53 expp1 FMn0FMn+1=FMnFM
54 35 53 sylan FAMn0FMn+1=FMnFM
55 52 54 eqeq12d FAMn0FMn+1=FMn+1FMnFM=FMnFM
56 38 55 imbitrrid FAMn0FMn=FMnFMn+1=FMn+1
57 56 expcom n0FAMFMn=FMnFMn+1=FMn+1
58 57 a2d n0FAMFMn=FMnFAMFMn+1=FMn+1
59 7 12 17 22 37 58 nn0ind N0FAMFMN=FMN
60 59 com12 FAMN0FMN=FMN
61 60 3impia FAMN0FMN=FMN