| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
| 2 |
|
qabsabv.a |
|- A = ( AbsVal ` Q ) |
| 3 |
|
oveq2 |
|- ( k = 0 -> ( M ^ k ) = ( M ^ 0 ) ) |
| 4 |
3
|
fveq2d |
|- ( k = 0 -> ( F ` ( M ^ k ) ) = ( F ` ( M ^ 0 ) ) ) |
| 5 |
|
oveq2 |
|- ( k = 0 -> ( ( F ` M ) ^ k ) = ( ( F ` M ) ^ 0 ) ) |
| 6 |
4 5
|
eqeq12d |
|- ( k = 0 -> ( ( F ` ( M ^ k ) ) = ( ( F ` M ) ^ k ) <-> ( F ` ( M ^ 0 ) ) = ( ( F ` M ) ^ 0 ) ) ) |
| 7 |
6
|
imbi2d |
|- ( k = 0 -> ( ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ k ) ) = ( ( F ` M ) ^ k ) ) <-> ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ 0 ) ) = ( ( F ` M ) ^ 0 ) ) ) ) |
| 8 |
|
oveq2 |
|- ( k = n -> ( M ^ k ) = ( M ^ n ) ) |
| 9 |
8
|
fveq2d |
|- ( k = n -> ( F ` ( M ^ k ) ) = ( F ` ( M ^ n ) ) ) |
| 10 |
|
oveq2 |
|- ( k = n -> ( ( F ` M ) ^ k ) = ( ( F ` M ) ^ n ) ) |
| 11 |
9 10
|
eqeq12d |
|- ( k = n -> ( ( F ` ( M ^ k ) ) = ( ( F ` M ) ^ k ) <-> ( F ` ( M ^ n ) ) = ( ( F ` M ) ^ n ) ) ) |
| 12 |
11
|
imbi2d |
|- ( k = n -> ( ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ k ) ) = ( ( F ` M ) ^ k ) ) <-> ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ n ) ) = ( ( F ` M ) ^ n ) ) ) ) |
| 13 |
|
oveq2 |
|- ( k = ( n + 1 ) -> ( M ^ k ) = ( M ^ ( n + 1 ) ) ) |
| 14 |
13
|
fveq2d |
|- ( k = ( n + 1 ) -> ( F ` ( M ^ k ) ) = ( F ` ( M ^ ( n + 1 ) ) ) ) |
| 15 |
|
oveq2 |
|- ( k = ( n + 1 ) -> ( ( F ` M ) ^ k ) = ( ( F ` M ) ^ ( n + 1 ) ) ) |
| 16 |
14 15
|
eqeq12d |
|- ( k = ( n + 1 ) -> ( ( F ` ( M ^ k ) ) = ( ( F ` M ) ^ k ) <-> ( F ` ( M ^ ( n + 1 ) ) ) = ( ( F ` M ) ^ ( n + 1 ) ) ) ) |
| 17 |
16
|
imbi2d |
|- ( k = ( n + 1 ) -> ( ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ k ) ) = ( ( F ` M ) ^ k ) ) <-> ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ ( n + 1 ) ) ) = ( ( F ` M ) ^ ( n + 1 ) ) ) ) ) |
| 18 |
|
oveq2 |
|- ( k = N -> ( M ^ k ) = ( M ^ N ) ) |
| 19 |
18
|
fveq2d |
|- ( k = N -> ( F ` ( M ^ k ) ) = ( F ` ( M ^ N ) ) ) |
| 20 |
|
oveq2 |
|- ( k = N -> ( ( F ` M ) ^ k ) = ( ( F ` M ) ^ N ) ) |
| 21 |
19 20
|
eqeq12d |
|- ( k = N -> ( ( F ` ( M ^ k ) ) = ( ( F ` M ) ^ k ) <-> ( F ` ( M ^ N ) ) = ( ( F ` M ) ^ N ) ) ) |
| 22 |
21
|
imbi2d |
|- ( k = N -> ( ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ k ) ) = ( ( F ` M ) ^ k ) ) <-> ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ N ) ) = ( ( F ` M ) ^ N ) ) ) ) |
| 23 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 24 |
1
|
qrng1 |
|- 1 = ( 1r ` Q ) |
| 25 |
1
|
qrng0 |
|- 0 = ( 0g ` Q ) |
| 26 |
2 24 25
|
abv1z |
|- ( ( F e. A /\ 1 =/= 0 ) -> ( F ` 1 ) = 1 ) |
| 27 |
23 26
|
mpan2 |
|- ( F e. A -> ( F ` 1 ) = 1 ) |
| 28 |
27
|
adantr |
|- ( ( F e. A /\ M e. QQ ) -> ( F ` 1 ) = 1 ) |
| 29 |
|
qcn |
|- ( M e. QQ -> M e. CC ) |
| 30 |
29
|
adantl |
|- ( ( F e. A /\ M e. QQ ) -> M e. CC ) |
| 31 |
30
|
exp0d |
|- ( ( F e. A /\ M e. QQ ) -> ( M ^ 0 ) = 1 ) |
| 32 |
31
|
fveq2d |
|- ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ 0 ) ) = ( F ` 1 ) ) |
| 33 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
| 34 |
2 33
|
abvcl |
|- ( ( F e. A /\ M e. QQ ) -> ( F ` M ) e. RR ) |
| 35 |
34
|
recnd |
|- ( ( F e. A /\ M e. QQ ) -> ( F ` M ) e. CC ) |
| 36 |
35
|
exp0d |
|- ( ( F e. A /\ M e. QQ ) -> ( ( F ` M ) ^ 0 ) = 1 ) |
| 37 |
28 32 36
|
3eqtr4d |
|- ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ 0 ) ) = ( ( F ` M ) ^ 0 ) ) |
| 38 |
|
oveq1 |
|- ( ( F ` ( M ^ n ) ) = ( ( F ` M ) ^ n ) -> ( ( F ` ( M ^ n ) ) x. ( F ` M ) ) = ( ( ( F ` M ) ^ n ) x. ( F ` M ) ) ) |
| 39 |
|
expp1 |
|- ( ( M e. CC /\ n e. NN0 ) -> ( M ^ ( n + 1 ) ) = ( ( M ^ n ) x. M ) ) |
| 40 |
30 39
|
sylan |
|- ( ( ( F e. A /\ M e. QQ ) /\ n e. NN0 ) -> ( M ^ ( n + 1 ) ) = ( ( M ^ n ) x. M ) ) |
| 41 |
40
|
fveq2d |
|- ( ( ( F e. A /\ M e. QQ ) /\ n e. NN0 ) -> ( F ` ( M ^ ( n + 1 ) ) ) = ( F ` ( ( M ^ n ) x. M ) ) ) |
| 42 |
|
simpll |
|- ( ( ( F e. A /\ M e. QQ ) /\ n e. NN0 ) -> F e. A ) |
| 43 |
|
qexpcl |
|- ( ( M e. QQ /\ n e. NN0 ) -> ( M ^ n ) e. QQ ) |
| 44 |
43
|
adantll |
|- ( ( ( F e. A /\ M e. QQ ) /\ n e. NN0 ) -> ( M ^ n ) e. QQ ) |
| 45 |
|
simplr |
|- ( ( ( F e. A /\ M e. QQ ) /\ n e. NN0 ) -> M e. QQ ) |
| 46 |
|
qex |
|- QQ e. _V |
| 47 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 48 |
1 47
|
ressmulr |
|- ( QQ e. _V -> x. = ( .r ` Q ) ) |
| 49 |
46 48
|
ax-mp |
|- x. = ( .r ` Q ) |
| 50 |
2 33 49
|
abvmul |
|- ( ( F e. A /\ ( M ^ n ) e. QQ /\ M e. QQ ) -> ( F ` ( ( M ^ n ) x. M ) ) = ( ( F ` ( M ^ n ) ) x. ( F ` M ) ) ) |
| 51 |
42 44 45 50
|
syl3anc |
|- ( ( ( F e. A /\ M e. QQ ) /\ n e. NN0 ) -> ( F ` ( ( M ^ n ) x. M ) ) = ( ( F ` ( M ^ n ) ) x. ( F ` M ) ) ) |
| 52 |
41 51
|
eqtrd |
|- ( ( ( F e. A /\ M e. QQ ) /\ n e. NN0 ) -> ( F ` ( M ^ ( n + 1 ) ) ) = ( ( F ` ( M ^ n ) ) x. ( F ` M ) ) ) |
| 53 |
|
expp1 |
|- ( ( ( F ` M ) e. CC /\ n e. NN0 ) -> ( ( F ` M ) ^ ( n + 1 ) ) = ( ( ( F ` M ) ^ n ) x. ( F ` M ) ) ) |
| 54 |
35 53
|
sylan |
|- ( ( ( F e. A /\ M e. QQ ) /\ n e. NN0 ) -> ( ( F ` M ) ^ ( n + 1 ) ) = ( ( ( F ` M ) ^ n ) x. ( F ` M ) ) ) |
| 55 |
52 54
|
eqeq12d |
|- ( ( ( F e. A /\ M e. QQ ) /\ n e. NN0 ) -> ( ( F ` ( M ^ ( n + 1 ) ) ) = ( ( F ` M ) ^ ( n + 1 ) ) <-> ( ( F ` ( M ^ n ) ) x. ( F ` M ) ) = ( ( ( F ` M ) ^ n ) x. ( F ` M ) ) ) ) |
| 56 |
38 55
|
imbitrrid |
|- ( ( ( F e. A /\ M e. QQ ) /\ n e. NN0 ) -> ( ( F ` ( M ^ n ) ) = ( ( F ` M ) ^ n ) -> ( F ` ( M ^ ( n + 1 ) ) ) = ( ( F ` M ) ^ ( n + 1 ) ) ) ) |
| 57 |
56
|
expcom |
|- ( n e. NN0 -> ( ( F e. A /\ M e. QQ ) -> ( ( F ` ( M ^ n ) ) = ( ( F ` M ) ^ n ) -> ( F ` ( M ^ ( n + 1 ) ) ) = ( ( F ` M ) ^ ( n + 1 ) ) ) ) ) |
| 58 |
57
|
a2d |
|- ( n e. NN0 -> ( ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ n ) ) = ( ( F ` M ) ^ n ) ) -> ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ ( n + 1 ) ) ) = ( ( F ` M ) ^ ( n + 1 ) ) ) ) ) |
| 59 |
7 12 17 22 37 58
|
nn0ind |
|- ( N e. NN0 -> ( ( F e. A /\ M e. QQ ) -> ( F ` ( M ^ N ) ) = ( ( F ` M ) ^ N ) ) ) |
| 60 |
59
|
com12 |
|- ( ( F e. A /\ M e. QQ ) -> ( N e. NN0 -> ( F ` ( M ^ N ) ) = ( ( F ` M ) ^ N ) ) ) |
| 61 |
60
|
3impia |
|- ( ( F e. A /\ M e. QQ /\ N e. NN0 ) -> ( F ` ( M ^ N ) ) = ( ( F ` M ) ^ N ) ) |