| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q |  |-  Q = ( CCfld |`s QQ ) | 
						
							| 2 |  | qabsabv.a |  |-  A = ( AbsVal ` Q ) | 
						
							| 3 |  | ostthlem1.1 |  |-  ( ph -> F e. A ) | 
						
							| 4 |  | ostthlem1.2 |  |-  ( ph -> G e. A ) | 
						
							| 5 |  | ostthlem1.3 |  |-  ( ( ph /\ n e. ( ZZ>= ` 2 ) ) -> ( F ` n ) = ( G ` n ) ) | 
						
							| 6 | 1 | qrngbas |  |-  QQ = ( Base ` Q ) | 
						
							| 7 | 2 6 | abvf |  |-  ( F e. A -> F : QQ --> RR ) | 
						
							| 8 |  | ffn |  |-  ( F : QQ --> RR -> F Fn QQ ) | 
						
							| 9 | 3 7 8 | 3syl |  |-  ( ph -> F Fn QQ ) | 
						
							| 10 | 2 6 | abvf |  |-  ( G e. A -> G : QQ --> RR ) | 
						
							| 11 |  | ffn |  |-  ( G : QQ --> RR -> G Fn QQ ) | 
						
							| 12 | 4 10 11 | 3syl |  |-  ( ph -> G Fn QQ ) | 
						
							| 13 |  | elq |  |-  ( y e. QQ <-> E. k e. ZZ E. n e. NN y = ( k / n ) ) | 
						
							| 14 | 1 | qdrng |  |-  Q e. DivRing | 
						
							| 15 | 14 | a1i |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> Q e. DivRing ) | 
						
							| 16 | 3 | adantr |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> F e. A ) | 
						
							| 17 |  | zq |  |-  ( k e. ZZ -> k e. QQ ) | 
						
							| 18 | 17 | ad2antrl |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> k e. QQ ) | 
						
							| 19 |  | nnq |  |-  ( n e. NN -> n e. QQ ) | 
						
							| 20 | 19 | ad2antll |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> n e. QQ ) | 
						
							| 21 |  | nnne0 |  |-  ( n e. NN -> n =/= 0 ) | 
						
							| 22 | 21 | ad2antll |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> n =/= 0 ) | 
						
							| 23 | 1 | qrng0 |  |-  0 = ( 0g ` Q ) | 
						
							| 24 |  | eqid |  |-  ( /r ` Q ) = ( /r ` Q ) | 
						
							| 25 | 2 6 23 24 | abvdiv |  |-  ( ( ( Q e. DivRing /\ F e. A ) /\ ( k e. QQ /\ n e. QQ /\ n =/= 0 ) ) -> ( F ` ( k ( /r ` Q ) n ) ) = ( ( F ` k ) / ( F ` n ) ) ) | 
						
							| 26 | 15 16 18 20 22 25 | syl23anc |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` ( k ( /r ` Q ) n ) ) = ( ( F ` k ) / ( F ` n ) ) ) | 
						
							| 27 | 4 | adantr |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> G e. A ) | 
						
							| 28 | 2 6 23 24 | abvdiv |  |-  ( ( ( Q e. DivRing /\ G e. A ) /\ ( k e. QQ /\ n e. QQ /\ n =/= 0 ) ) -> ( G ` ( k ( /r ` Q ) n ) ) = ( ( G ` k ) / ( G ` n ) ) ) | 
						
							| 29 | 15 27 18 20 22 28 | syl23anc |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( G ` ( k ( /r ` Q ) n ) ) = ( ( G ` k ) / ( G ` n ) ) ) | 
						
							| 30 | 2 23 | abv0 |  |-  ( F e. A -> ( F ` 0 ) = 0 ) | 
						
							| 31 | 3 30 | syl |  |-  ( ph -> ( F ` 0 ) = 0 ) | 
						
							| 32 | 2 23 | abv0 |  |-  ( G e. A -> ( G ` 0 ) = 0 ) | 
						
							| 33 | 4 32 | syl |  |-  ( ph -> ( G ` 0 ) = 0 ) | 
						
							| 34 | 31 33 | eqtr4d |  |-  ( ph -> ( F ` 0 ) = ( G ` 0 ) ) | 
						
							| 35 |  | fveq2 |  |-  ( k = 0 -> ( F ` k ) = ( F ` 0 ) ) | 
						
							| 36 |  | fveq2 |  |-  ( k = 0 -> ( G ` k ) = ( G ` 0 ) ) | 
						
							| 37 | 35 36 | eqeq12d |  |-  ( k = 0 -> ( ( F ` k ) = ( G ` k ) <-> ( F ` 0 ) = ( G ` 0 ) ) ) | 
						
							| 38 | 34 37 | syl5ibrcom |  |-  ( ph -> ( k = 0 -> ( F ` k ) = ( G ` k ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ k e. ZZ ) -> ( k = 0 -> ( F ` k ) = ( G ` k ) ) ) | 
						
							| 40 | 39 | imp |  |-  ( ( ( ph /\ k e. ZZ ) /\ k = 0 ) -> ( F ` k ) = ( G ` k ) ) | 
						
							| 41 |  | elnn1uz2 |  |-  ( n e. NN <-> ( n = 1 \/ n e. ( ZZ>= ` 2 ) ) ) | 
						
							| 42 | 1 | qrng1 |  |-  1 = ( 1r ` Q ) | 
						
							| 43 | 2 42 | abv1 |  |-  ( ( Q e. DivRing /\ F e. A ) -> ( F ` 1 ) = 1 ) | 
						
							| 44 | 14 3 43 | sylancr |  |-  ( ph -> ( F ` 1 ) = 1 ) | 
						
							| 45 | 2 42 | abv1 |  |-  ( ( Q e. DivRing /\ G e. A ) -> ( G ` 1 ) = 1 ) | 
						
							| 46 | 14 4 45 | sylancr |  |-  ( ph -> ( G ` 1 ) = 1 ) | 
						
							| 47 | 44 46 | eqtr4d |  |-  ( ph -> ( F ` 1 ) = ( G ` 1 ) ) | 
						
							| 48 |  | fveq2 |  |-  ( n = 1 -> ( F ` n ) = ( F ` 1 ) ) | 
						
							| 49 |  | fveq2 |  |-  ( n = 1 -> ( G ` n ) = ( G ` 1 ) ) | 
						
							| 50 | 48 49 | eqeq12d |  |-  ( n = 1 -> ( ( F ` n ) = ( G ` n ) <-> ( F ` 1 ) = ( G ` 1 ) ) ) | 
						
							| 51 | 47 50 | syl5ibrcom |  |-  ( ph -> ( n = 1 -> ( F ` n ) = ( G ` n ) ) ) | 
						
							| 52 | 51 | imp |  |-  ( ( ph /\ n = 1 ) -> ( F ` n ) = ( G ` n ) ) | 
						
							| 53 | 52 5 | jaodan |  |-  ( ( ph /\ ( n = 1 \/ n e. ( ZZ>= ` 2 ) ) ) -> ( F ` n ) = ( G ` n ) ) | 
						
							| 54 | 41 53 | sylan2b |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) = ( G ` n ) ) | 
						
							| 55 | 54 | ralrimiva |  |-  ( ph -> A. n e. NN ( F ` n ) = ( G ` n ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ph /\ k e. ZZ ) -> A. n e. NN ( F ` n ) = ( G ` n ) ) | 
						
							| 57 |  | fveq2 |  |-  ( n = k -> ( F ` n ) = ( F ` k ) ) | 
						
							| 58 |  | fveq2 |  |-  ( n = k -> ( G ` n ) = ( G ` k ) ) | 
						
							| 59 | 57 58 | eqeq12d |  |-  ( n = k -> ( ( F ` n ) = ( G ` n ) <-> ( F ` k ) = ( G ` k ) ) ) | 
						
							| 60 | 59 | rspccva |  |-  ( ( A. n e. NN ( F ` n ) = ( G ` n ) /\ k e. NN ) -> ( F ` k ) = ( G ` k ) ) | 
						
							| 61 | 56 60 | sylan |  |-  ( ( ( ph /\ k e. ZZ ) /\ k e. NN ) -> ( F ` k ) = ( G ` k ) ) | 
						
							| 62 |  | fveq2 |  |-  ( n = ( ( invg ` Q ) ` k ) -> ( F ` n ) = ( F ` ( ( invg ` Q ) ` k ) ) ) | 
						
							| 63 |  | fveq2 |  |-  ( n = ( ( invg ` Q ) ` k ) -> ( G ` n ) = ( G ` ( ( invg ` Q ) ` k ) ) ) | 
						
							| 64 | 62 63 | eqeq12d |  |-  ( n = ( ( invg ` Q ) ` k ) -> ( ( F ` n ) = ( G ` n ) <-> ( F ` ( ( invg ` Q ) ` k ) ) = ( G ` ( ( invg ` Q ) ` k ) ) ) ) | 
						
							| 65 | 55 | ad2antrr |  |-  ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> A. n e. NN ( F ` n ) = ( G ` n ) ) | 
						
							| 66 | 17 | adantl |  |-  ( ( ph /\ k e. ZZ ) -> k e. QQ ) | 
						
							| 67 | 1 | qrngneg |  |-  ( k e. QQ -> ( ( invg ` Q ) ` k ) = -u k ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( ph /\ k e. ZZ ) -> ( ( invg ` Q ) ` k ) = -u k ) | 
						
							| 69 | 68 | eleq1d |  |-  ( ( ph /\ k e. ZZ ) -> ( ( ( invg ` Q ) ` k ) e. NN <-> -u k e. NN ) ) | 
						
							| 70 | 69 | biimpar |  |-  ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> ( ( invg ` Q ) ` k ) e. NN ) | 
						
							| 71 | 64 65 70 | rspcdva |  |-  ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> ( F ` ( ( invg ` Q ) ` k ) ) = ( G ` ( ( invg ` Q ) ` k ) ) ) | 
						
							| 72 | 3 | ad2antrr |  |-  ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> F e. A ) | 
						
							| 73 | 17 | ad2antlr |  |-  ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> k e. QQ ) | 
						
							| 74 |  | eqid |  |-  ( invg ` Q ) = ( invg ` Q ) | 
						
							| 75 | 2 6 74 | abvneg |  |-  ( ( F e. A /\ k e. QQ ) -> ( F ` ( ( invg ` Q ) ` k ) ) = ( F ` k ) ) | 
						
							| 76 | 72 73 75 | syl2anc |  |-  ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> ( F ` ( ( invg ` Q ) ` k ) ) = ( F ` k ) ) | 
						
							| 77 | 4 | ad2antrr |  |-  ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> G e. A ) | 
						
							| 78 | 2 6 74 | abvneg |  |-  ( ( G e. A /\ k e. QQ ) -> ( G ` ( ( invg ` Q ) ` k ) ) = ( G ` k ) ) | 
						
							| 79 | 77 73 78 | syl2anc |  |-  ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> ( G ` ( ( invg ` Q ) ` k ) ) = ( G ` k ) ) | 
						
							| 80 | 71 76 79 | 3eqtr3d |  |-  ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> ( F ` k ) = ( G ` k ) ) | 
						
							| 81 |  | elz |  |-  ( k e. ZZ <-> ( k e. RR /\ ( k = 0 \/ k e. NN \/ -u k e. NN ) ) ) | 
						
							| 82 | 81 | simprbi |  |-  ( k e. ZZ -> ( k = 0 \/ k e. NN \/ -u k e. NN ) ) | 
						
							| 83 | 82 | adantl |  |-  ( ( ph /\ k e. ZZ ) -> ( k = 0 \/ k e. NN \/ -u k e. NN ) ) | 
						
							| 84 | 40 61 80 83 | mpjao3dan |  |-  ( ( ph /\ k e. ZZ ) -> ( F ` k ) = ( G ` k ) ) | 
						
							| 85 | 84 | adantrr |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` k ) = ( G ` k ) ) | 
						
							| 86 | 54 | adantrl |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` n ) = ( G ` n ) ) | 
						
							| 87 | 85 86 | oveq12d |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( ( F ` k ) / ( F ` n ) ) = ( ( G ` k ) / ( G ` n ) ) ) | 
						
							| 88 | 29 87 | eqtr4d |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( G ` ( k ( /r ` Q ) n ) ) = ( ( F ` k ) / ( F ` n ) ) ) | 
						
							| 89 | 26 88 | eqtr4d |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` ( k ( /r ` Q ) n ) ) = ( G ` ( k ( /r ` Q ) n ) ) ) | 
						
							| 90 | 1 | qrngdiv |  |-  ( ( k e. QQ /\ n e. QQ /\ n =/= 0 ) -> ( k ( /r ` Q ) n ) = ( k / n ) ) | 
						
							| 91 | 18 20 22 90 | syl3anc |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( k ( /r ` Q ) n ) = ( k / n ) ) | 
						
							| 92 | 91 | fveq2d |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` ( k ( /r ` Q ) n ) ) = ( F ` ( k / n ) ) ) | 
						
							| 93 | 91 | fveq2d |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( G ` ( k ( /r ` Q ) n ) ) = ( G ` ( k / n ) ) ) | 
						
							| 94 | 89 92 93 | 3eqtr3d |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` ( k / n ) ) = ( G ` ( k / n ) ) ) | 
						
							| 95 |  | fveq2 |  |-  ( y = ( k / n ) -> ( F ` y ) = ( F ` ( k / n ) ) ) | 
						
							| 96 |  | fveq2 |  |-  ( y = ( k / n ) -> ( G ` y ) = ( G ` ( k / n ) ) ) | 
						
							| 97 | 95 96 | eqeq12d |  |-  ( y = ( k / n ) -> ( ( F ` y ) = ( G ` y ) <-> ( F ` ( k / n ) ) = ( G ` ( k / n ) ) ) ) | 
						
							| 98 | 94 97 | syl5ibrcom |  |-  ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( y = ( k / n ) -> ( F ` y ) = ( G ` y ) ) ) | 
						
							| 99 | 98 | rexlimdvva |  |-  ( ph -> ( E. k e. ZZ E. n e. NN y = ( k / n ) -> ( F ` y ) = ( G ` y ) ) ) | 
						
							| 100 | 13 99 | biimtrid |  |-  ( ph -> ( y e. QQ -> ( F ` y ) = ( G ` y ) ) ) | 
						
							| 101 | 100 | imp |  |-  ( ( ph /\ y e. QQ ) -> ( F ` y ) = ( G ` y ) ) | 
						
							| 102 | 9 12 101 | eqfnfvd |  |-  ( ph -> F = G ) |