Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
2 |
|
qabsabv.a |
|- A = ( AbsVal ` Q ) |
3 |
|
ostthlem1.1 |
|- ( ph -> F e. A ) |
4 |
|
ostthlem1.2 |
|- ( ph -> G e. A ) |
5 |
|
ostthlem1.3 |
|- ( ( ph /\ n e. ( ZZ>= ` 2 ) ) -> ( F ` n ) = ( G ` n ) ) |
6 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
7 |
2 6
|
abvf |
|- ( F e. A -> F : QQ --> RR ) |
8 |
|
ffn |
|- ( F : QQ --> RR -> F Fn QQ ) |
9 |
3 7 8
|
3syl |
|- ( ph -> F Fn QQ ) |
10 |
2 6
|
abvf |
|- ( G e. A -> G : QQ --> RR ) |
11 |
|
ffn |
|- ( G : QQ --> RR -> G Fn QQ ) |
12 |
4 10 11
|
3syl |
|- ( ph -> G Fn QQ ) |
13 |
|
elq |
|- ( y e. QQ <-> E. k e. ZZ E. n e. NN y = ( k / n ) ) |
14 |
1
|
qdrng |
|- Q e. DivRing |
15 |
14
|
a1i |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> Q e. DivRing ) |
16 |
3
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> F e. A ) |
17 |
|
zq |
|- ( k e. ZZ -> k e. QQ ) |
18 |
17
|
ad2antrl |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> k e. QQ ) |
19 |
|
nnq |
|- ( n e. NN -> n e. QQ ) |
20 |
19
|
ad2antll |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> n e. QQ ) |
21 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
22 |
21
|
ad2antll |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> n =/= 0 ) |
23 |
1
|
qrng0 |
|- 0 = ( 0g ` Q ) |
24 |
|
eqid |
|- ( /r ` Q ) = ( /r ` Q ) |
25 |
2 6 23 24
|
abvdiv |
|- ( ( ( Q e. DivRing /\ F e. A ) /\ ( k e. QQ /\ n e. QQ /\ n =/= 0 ) ) -> ( F ` ( k ( /r ` Q ) n ) ) = ( ( F ` k ) / ( F ` n ) ) ) |
26 |
15 16 18 20 22 25
|
syl23anc |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` ( k ( /r ` Q ) n ) ) = ( ( F ` k ) / ( F ` n ) ) ) |
27 |
4
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> G e. A ) |
28 |
2 6 23 24
|
abvdiv |
|- ( ( ( Q e. DivRing /\ G e. A ) /\ ( k e. QQ /\ n e. QQ /\ n =/= 0 ) ) -> ( G ` ( k ( /r ` Q ) n ) ) = ( ( G ` k ) / ( G ` n ) ) ) |
29 |
15 27 18 20 22 28
|
syl23anc |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( G ` ( k ( /r ` Q ) n ) ) = ( ( G ` k ) / ( G ` n ) ) ) |
30 |
2 23
|
abv0 |
|- ( F e. A -> ( F ` 0 ) = 0 ) |
31 |
3 30
|
syl |
|- ( ph -> ( F ` 0 ) = 0 ) |
32 |
2 23
|
abv0 |
|- ( G e. A -> ( G ` 0 ) = 0 ) |
33 |
4 32
|
syl |
|- ( ph -> ( G ` 0 ) = 0 ) |
34 |
31 33
|
eqtr4d |
|- ( ph -> ( F ` 0 ) = ( G ` 0 ) ) |
35 |
|
fveq2 |
|- ( k = 0 -> ( F ` k ) = ( F ` 0 ) ) |
36 |
|
fveq2 |
|- ( k = 0 -> ( G ` k ) = ( G ` 0 ) ) |
37 |
35 36
|
eqeq12d |
|- ( k = 0 -> ( ( F ` k ) = ( G ` k ) <-> ( F ` 0 ) = ( G ` 0 ) ) ) |
38 |
34 37
|
syl5ibrcom |
|- ( ph -> ( k = 0 -> ( F ` k ) = ( G ` k ) ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> ( k = 0 -> ( F ` k ) = ( G ` k ) ) ) |
40 |
39
|
imp |
|- ( ( ( ph /\ k e. ZZ ) /\ k = 0 ) -> ( F ` k ) = ( G ` k ) ) |
41 |
|
elnn1uz2 |
|- ( n e. NN <-> ( n = 1 \/ n e. ( ZZ>= ` 2 ) ) ) |
42 |
1
|
qrng1 |
|- 1 = ( 1r ` Q ) |
43 |
2 42
|
abv1 |
|- ( ( Q e. DivRing /\ F e. A ) -> ( F ` 1 ) = 1 ) |
44 |
14 3 43
|
sylancr |
|- ( ph -> ( F ` 1 ) = 1 ) |
45 |
2 42
|
abv1 |
|- ( ( Q e. DivRing /\ G e. A ) -> ( G ` 1 ) = 1 ) |
46 |
14 4 45
|
sylancr |
|- ( ph -> ( G ` 1 ) = 1 ) |
47 |
44 46
|
eqtr4d |
|- ( ph -> ( F ` 1 ) = ( G ` 1 ) ) |
48 |
|
fveq2 |
|- ( n = 1 -> ( F ` n ) = ( F ` 1 ) ) |
49 |
|
fveq2 |
|- ( n = 1 -> ( G ` n ) = ( G ` 1 ) ) |
50 |
48 49
|
eqeq12d |
|- ( n = 1 -> ( ( F ` n ) = ( G ` n ) <-> ( F ` 1 ) = ( G ` 1 ) ) ) |
51 |
47 50
|
syl5ibrcom |
|- ( ph -> ( n = 1 -> ( F ` n ) = ( G ` n ) ) ) |
52 |
51
|
imp |
|- ( ( ph /\ n = 1 ) -> ( F ` n ) = ( G ` n ) ) |
53 |
52 5
|
jaodan |
|- ( ( ph /\ ( n = 1 \/ n e. ( ZZ>= ` 2 ) ) ) -> ( F ` n ) = ( G ` n ) ) |
54 |
41 53
|
sylan2b |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( G ` n ) ) |
55 |
54
|
ralrimiva |
|- ( ph -> A. n e. NN ( F ` n ) = ( G ` n ) ) |
56 |
55
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> A. n e. NN ( F ` n ) = ( G ` n ) ) |
57 |
|
fveq2 |
|- ( n = k -> ( F ` n ) = ( F ` k ) ) |
58 |
|
fveq2 |
|- ( n = k -> ( G ` n ) = ( G ` k ) ) |
59 |
57 58
|
eqeq12d |
|- ( n = k -> ( ( F ` n ) = ( G ` n ) <-> ( F ` k ) = ( G ` k ) ) ) |
60 |
59
|
rspccva |
|- ( ( A. n e. NN ( F ` n ) = ( G ` n ) /\ k e. NN ) -> ( F ` k ) = ( G ` k ) ) |
61 |
56 60
|
sylan |
|- ( ( ( ph /\ k e. ZZ ) /\ k e. NN ) -> ( F ` k ) = ( G ` k ) ) |
62 |
|
fveq2 |
|- ( n = ( ( invg ` Q ) ` k ) -> ( F ` n ) = ( F ` ( ( invg ` Q ) ` k ) ) ) |
63 |
|
fveq2 |
|- ( n = ( ( invg ` Q ) ` k ) -> ( G ` n ) = ( G ` ( ( invg ` Q ) ` k ) ) ) |
64 |
62 63
|
eqeq12d |
|- ( n = ( ( invg ` Q ) ` k ) -> ( ( F ` n ) = ( G ` n ) <-> ( F ` ( ( invg ` Q ) ` k ) ) = ( G ` ( ( invg ` Q ) ` k ) ) ) ) |
65 |
55
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> A. n e. NN ( F ` n ) = ( G ` n ) ) |
66 |
17
|
adantl |
|- ( ( ph /\ k e. ZZ ) -> k e. QQ ) |
67 |
1
|
qrngneg |
|- ( k e. QQ -> ( ( invg ` Q ) ` k ) = -u k ) |
68 |
66 67
|
syl |
|- ( ( ph /\ k e. ZZ ) -> ( ( invg ` Q ) ` k ) = -u k ) |
69 |
68
|
eleq1d |
|- ( ( ph /\ k e. ZZ ) -> ( ( ( invg ` Q ) ` k ) e. NN <-> -u k e. NN ) ) |
70 |
69
|
biimpar |
|- ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> ( ( invg ` Q ) ` k ) e. NN ) |
71 |
64 65 70
|
rspcdva |
|- ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> ( F ` ( ( invg ` Q ) ` k ) ) = ( G ` ( ( invg ` Q ) ` k ) ) ) |
72 |
3
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> F e. A ) |
73 |
17
|
ad2antlr |
|- ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> k e. QQ ) |
74 |
|
eqid |
|- ( invg ` Q ) = ( invg ` Q ) |
75 |
2 6 74
|
abvneg |
|- ( ( F e. A /\ k e. QQ ) -> ( F ` ( ( invg ` Q ) ` k ) ) = ( F ` k ) ) |
76 |
72 73 75
|
syl2anc |
|- ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> ( F ` ( ( invg ` Q ) ` k ) ) = ( F ` k ) ) |
77 |
4
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> G e. A ) |
78 |
2 6 74
|
abvneg |
|- ( ( G e. A /\ k e. QQ ) -> ( G ` ( ( invg ` Q ) ` k ) ) = ( G ` k ) ) |
79 |
77 73 78
|
syl2anc |
|- ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> ( G ` ( ( invg ` Q ) ` k ) ) = ( G ` k ) ) |
80 |
71 76 79
|
3eqtr3d |
|- ( ( ( ph /\ k e. ZZ ) /\ -u k e. NN ) -> ( F ` k ) = ( G ` k ) ) |
81 |
|
elz |
|- ( k e. ZZ <-> ( k e. RR /\ ( k = 0 \/ k e. NN \/ -u k e. NN ) ) ) |
82 |
81
|
simprbi |
|- ( k e. ZZ -> ( k = 0 \/ k e. NN \/ -u k e. NN ) ) |
83 |
82
|
adantl |
|- ( ( ph /\ k e. ZZ ) -> ( k = 0 \/ k e. NN \/ -u k e. NN ) ) |
84 |
40 61 80 83
|
mpjao3dan |
|- ( ( ph /\ k e. ZZ ) -> ( F ` k ) = ( G ` k ) ) |
85 |
84
|
adantrr |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` k ) = ( G ` k ) ) |
86 |
54
|
adantrl |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` n ) = ( G ` n ) ) |
87 |
85 86
|
oveq12d |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( ( F ` k ) / ( F ` n ) ) = ( ( G ` k ) / ( G ` n ) ) ) |
88 |
29 87
|
eqtr4d |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( G ` ( k ( /r ` Q ) n ) ) = ( ( F ` k ) / ( F ` n ) ) ) |
89 |
26 88
|
eqtr4d |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` ( k ( /r ` Q ) n ) ) = ( G ` ( k ( /r ` Q ) n ) ) ) |
90 |
1
|
qrngdiv |
|- ( ( k e. QQ /\ n e. QQ /\ n =/= 0 ) -> ( k ( /r ` Q ) n ) = ( k / n ) ) |
91 |
18 20 22 90
|
syl3anc |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( k ( /r ` Q ) n ) = ( k / n ) ) |
92 |
91
|
fveq2d |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` ( k ( /r ` Q ) n ) ) = ( F ` ( k / n ) ) ) |
93 |
91
|
fveq2d |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( G ` ( k ( /r ` Q ) n ) ) = ( G ` ( k / n ) ) ) |
94 |
89 92 93
|
3eqtr3d |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( F ` ( k / n ) ) = ( G ` ( k / n ) ) ) |
95 |
|
fveq2 |
|- ( y = ( k / n ) -> ( F ` y ) = ( F ` ( k / n ) ) ) |
96 |
|
fveq2 |
|- ( y = ( k / n ) -> ( G ` y ) = ( G ` ( k / n ) ) ) |
97 |
95 96
|
eqeq12d |
|- ( y = ( k / n ) -> ( ( F ` y ) = ( G ` y ) <-> ( F ` ( k / n ) ) = ( G ` ( k / n ) ) ) ) |
98 |
94 97
|
syl5ibrcom |
|- ( ( ph /\ ( k e. ZZ /\ n e. NN ) ) -> ( y = ( k / n ) -> ( F ` y ) = ( G ` y ) ) ) |
99 |
98
|
rexlimdvva |
|- ( ph -> ( E. k e. ZZ E. n e. NN y = ( k / n ) -> ( F ` y ) = ( G ` y ) ) ) |
100 |
13 99
|
syl5bi |
|- ( ph -> ( y e. QQ -> ( F ` y ) = ( G ` y ) ) ) |
101 |
100
|
imp |
|- ( ( ph /\ y e. QQ ) -> ( F ` y ) = ( G ` y ) ) |
102 |
9 12 101
|
eqfnfvd |
|- ( ph -> F = G ) |