| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q |  |-  Q = ( CCfld |`s QQ ) | 
						
							| 2 |  | qabsabv.a |  |-  A = ( AbsVal ` Q ) | 
						
							| 3 |  | ostthlem1.1 |  |-  ( ph -> F e. A ) | 
						
							| 4 |  | ostthlem1.2 |  |-  ( ph -> G e. A ) | 
						
							| 5 |  | ostthlem2.3 |  |-  ( ( ph /\ p e. Prime ) -> ( F ` p ) = ( G ` p ) ) | 
						
							| 6 |  | eluz2nn |  |-  ( n e. ( ZZ>= ` 2 ) -> n e. NN ) | 
						
							| 7 |  | fveq2 |  |-  ( p = 1 -> ( F ` p ) = ( F ` 1 ) ) | 
						
							| 8 |  | fveq2 |  |-  ( p = 1 -> ( G ` p ) = ( G ` 1 ) ) | 
						
							| 9 | 7 8 | eqeq12d |  |-  ( p = 1 -> ( ( F ` p ) = ( G ` p ) <-> ( F ` 1 ) = ( G ` 1 ) ) ) | 
						
							| 10 | 9 | imbi2d |  |-  ( p = 1 -> ( ( ph -> ( F ` p ) = ( G ` p ) ) <-> ( ph -> ( F ` 1 ) = ( G ` 1 ) ) ) ) | 
						
							| 11 |  | fveq2 |  |-  ( p = y -> ( F ` p ) = ( F ` y ) ) | 
						
							| 12 |  | fveq2 |  |-  ( p = y -> ( G ` p ) = ( G ` y ) ) | 
						
							| 13 | 11 12 | eqeq12d |  |-  ( p = y -> ( ( F ` p ) = ( G ` p ) <-> ( F ` y ) = ( G ` y ) ) ) | 
						
							| 14 | 13 | imbi2d |  |-  ( p = y -> ( ( ph -> ( F ` p ) = ( G ` p ) ) <-> ( ph -> ( F ` y ) = ( G ` y ) ) ) ) | 
						
							| 15 |  | fveq2 |  |-  ( p = z -> ( F ` p ) = ( F ` z ) ) | 
						
							| 16 |  | fveq2 |  |-  ( p = z -> ( G ` p ) = ( G ` z ) ) | 
						
							| 17 | 15 16 | eqeq12d |  |-  ( p = z -> ( ( F ` p ) = ( G ` p ) <-> ( F ` z ) = ( G ` z ) ) ) | 
						
							| 18 | 17 | imbi2d |  |-  ( p = z -> ( ( ph -> ( F ` p ) = ( G ` p ) ) <-> ( ph -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 19 |  | fveq2 |  |-  ( p = ( y x. z ) -> ( F ` p ) = ( F ` ( y x. z ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( p = ( y x. z ) -> ( G ` p ) = ( G ` ( y x. z ) ) ) | 
						
							| 21 | 19 20 | eqeq12d |  |-  ( p = ( y x. z ) -> ( ( F ` p ) = ( G ` p ) <-> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) | 
						
							| 22 | 21 | imbi2d |  |-  ( p = ( y x. z ) -> ( ( ph -> ( F ` p ) = ( G ` p ) ) <-> ( ph -> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) ) | 
						
							| 23 |  | fveq2 |  |-  ( p = n -> ( F ` p ) = ( F ` n ) ) | 
						
							| 24 |  | fveq2 |  |-  ( p = n -> ( G ` p ) = ( G ` n ) ) | 
						
							| 25 | 23 24 | eqeq12d |  |-  ( p = n -> ( ( F ` p ) = ( G ` p ) <-> ( F ` n ) = ( G ` n ) ) ) | 
						
							| 26 | 25 | imbi2d |  |-  ( p = n -> ( ( ph -> ( F ` p ) = ( G ` p ) ) <-> ( ph -> ( F ` n ) = ( G ` n ) ) ) ) | 
						
							| 27 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 28 | 1 | qrng1 |  |-  1 = ( 1r ` Q ) | 
						
							| 29 | 1 | qrng0 |  |-  0 = ( 0g ` Q ) | 
						
							| 30 | 2 28 29 | abv1z |  |-  ( ( F e. A /\ 1 =/= 0 ) -> ( F ` 1 ) = 1 ) | 
						
							| 31 | 3 27 30 | sylancl |  |-  ( ph -> ( F ` 1 ) = 1 ) | 
						
							| 32 | 2 28 29 | abv1z |  |-  ( ( G e. A /\ 1 =/= 0 ) -> ( G ` 1 ) = 1 ) | 
						
							| 33 | 4 27 32 | sylancl |  |-  ( ph -> ( G ` 1 ) = 1 ) | 
						
							| 34 | 31 33 | eqtr4d |  |-  ( ph -> ( F ` 1 ) = ( G ` 1 ) ) | 
						
							| 35 | 5 | expcom |  |-  ( p e. Prime -> ( ph -> ( F ` p ) = ( G ` p ) ) ) | 
						
							| 36 |  | jcab |  |-  ( ( ph -> ( ( F ` y ) = ( G ` y ) /\ ( F ` z ) = ( G ` z ) ) ) <-> ( ( ph -> ( F ` y ) = ( G ` y ) ) /\ ( ph -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 37 |  | oveq12 |  |-  ( ( ( F ` y ) = ( G ` y ) /\ ( F ` z ) = ( G ` z ) ) -> ( ( F ` y ) x. ( F ` z ) ) = ( ( G ` y ) x. ( G ` z ) ) ) | 
						
							| 38 | 3 | adantr |  |-  ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> F e. A ) | 
						
							| 39 |  | eluzelz |  |-  ( y e. ( ZZ>= ` 2 ) -> y e. ZZ ) | 
						
							| 40 | 39 | ad2antrl |  |-  ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> y e. ZZ ) | 
						
							| 41 |  | zq |  |-  ( y e. ZZ -> y e. QQ ) | 
						
							| 42 | 40 41 | syl |  |-  ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> y e. QQ ) | 
						
							| 43 |  | eluzelz |  |-  ( z e. ( ZZ>= ` 2 ) -> z e. ZZ ) | 
						
							| 44 | 43 | ad2antll |  |-  ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> z e. ZZ ) | 
						
							| 45 |  | zq |  |-  ( z e. ZZ -> z e. QQ ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> z e. QQ ) | 
						
							| 47 | 1 | qrngbas |  |-  QQ = ( Base ` Q ) | 
						
							| 48 |  | qex |  |-  QQ e. _V | 
						
							| 49 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 50 | 1 49 | ressmulr |  |-  ( QQ e. _V -> x. = ( .r ` Q ) ) | 
						
							| 51 | 48 50 | ax-mp |  |-  x. = ( .r ` Q ) | 
						
							| 52 | 2 47 51 | abvmul |  |-  ( ( F e. A /\ y e. QQ /\ z e. QQ ) -> ( F ` ( y x. z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) | 
						
							| 53 | 38 42 46 52 | syl3anc |  |-  ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> ( F ` ( y x. z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) | 
						
							| 54 | 4 | adantr |  |-  ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> G e. A ) | 
						
							| 55 | 2 47 51 | abvmul |  |-  ( ( G e. A /\ y e. QQ /\ z e. QQ ) -> ( G ` ( y x. z ) ) = ( ( G ` y ) x. ( G ` z ) ) ) | 
						
							| 56 | 54 42 46 55 | syl3anc |  |-  ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> ( G ` ( y x. z ) ) = ( ( G ` y ) x. ( G ` z ) ) ) | 
						
							| 57 | 53 56 | eqeq12d |  |-  ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> ( ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) <-> ( ( F ` y ) x. ( F ` z ) ) = ( ( G ` y ) x. ( G ` z ) ) ) ) | 
						
							| 58 | 37 57 | imbitrrid |  |-  ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> ( ( ( F ` y ) = ( G ` y ) /\ ( F ` z ) = ( G ` z ) ) -> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) | 
						
							| 59 | 58 | expcom |  |-  ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ph -> ( ( ( F ` y ) = ( G ` y ) /\ ( F ` z ) = ( G ` z ) ) -> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) ) | 
						
							| 60 | 59 | a2d |  |-  ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ph -> ( ( F ` y ) = ( G ` y ) /\ ( F ` z ) = ( G ` z ) ) ) -> ( ph -> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) ) | 
						
							| 61 | 36 60 | biimtrrid |  |-  ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ( ph -> ( F ` y ) = ( G ` y ) ) /\ ( ph -> ( F ` z ) = ( G ` z ) ) ) -> ( ph -> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) ) | 
						
							| 62 | 10 14 18 22 26 34 35 61 | prmind |  |-  ( n e. NN -> ( ph -> ( F ` n ) = ( G ` n ) ) ) | 
						
							| 63 | 62 | impcom |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) = ( G ` n ) ) | 
						
							| 64 | 6 63 | sylan2 |  |-  ( ( ph /\ n e. ( ZZ>= ` 2 ) ) -> ( F ` n ) = ( G ` n ) ) | 
						
							| 65 | 1 2 3 4 64 | ostthlem1 |  |-  ( ph -> F = G ) |