Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
2 |
|
qabsabv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) |
3 |
|
ostthlem1.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
4 |
|
ostthlem1.2 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐴 ) |
5 |
|
ostthlem2.3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) |
6 |
|
eluz2nn |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → 𝑛 ∈ ℕ ) |
7 |
|
fveq2 |
⊢ ( 𝑝 = 1 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 1 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑝 = 1 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 1 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑝 = 1 → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑝 = 1 → ( ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑝 = 𝑦 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑦 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑝 = 𝑦 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑦 ) ) |
13 |
11 12
|
eqeq12d |
⊢ ( 𝑝 = 𝑦 → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑝 = 𝑦 → ( ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑝 = 𝑧 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑧 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑝 = 𝑧 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑧 ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( 𝑝 = 𝑧 → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑝 = 𝑧 → ( ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑦 · 𝑧 ) → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑦 · 𝑧 ) → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) |
21 |
19 20
|
eqeq12d |
⊢ ( 𝑝 = ( 𝑦 · 𝑧 ) → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ↔ ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑝 = ( 𝑦 · 𝑧 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) ) |
23 |
|
fveq2 |
⊢ ( 𝑝 = 𝑛 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑛 ) ) |
24 |
|
fveq2 |
⊢ ( 𝑝 = 𝑛 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑛 ) ) |
25 |
23 24
|
eqeq12d |
⊢ ( 𝑝 = 𝑛 → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) ) |
26 |
25
|
imbi2d |
⊢ ( 𝑝 = 𝑛 → ( ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) ) ) |
27 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
28 |
1
|
qrng1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
29 |
1
|
qrng0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
30 |
2 28 29
|
abv1z |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) = 1 ) |
31 |
3 27 30
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 1 ) |
32 |
2 28 29
|
abv1z |
⊢ ( ( 𝐺 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐺 ‘ 1 ) = 1 ) |
33 |
4 27 32
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = 1 ) |
34 |
31 33
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
35 |
5
|
expcom |
⊢ ( 𝑝 ∈ ℙ → ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ) |
36 |
|
jcab |
⊢ ( ( 𝜑 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ↔ ( ( 𝜑 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ ( 𝜑 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
37 |
|
oveq12 |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝐹 ∈ 𝐴 ) |
39 |
|
eluzelz |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → 𝑦 ∈ ℤ ) |
40 |
39
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝑦 ∈ ℤ ) |
41 |
|
zq |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℚ ) |
42 |
40 41
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝑦 ∈ ℚ ) |
43 |
|
eluzelz |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℤ ) |
44 |
43
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝑧 ∈ ℤ ) |
45 |
|
zq |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℚ ) |
46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝑧 ∈ ℚ ) |
47 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
48 |
|
qex |
⊢ ℚ ∈ V |
49 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
50 |
1 49
|
ressmulr |
⊢ ( ℚ ∈ V → · = ( .r ‘ 𝑄 ) ) |
51 |
48 50
|
ax-mp |
⊢ · = ( .r ‘ 𝑄 ) |
52 |
2 47 51
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
53 |
38 42 46 52
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
54 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝐺 ∈ 𝐴 ) |
55 |
2 47 51
|
abvmul |
⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ ) → ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
56 |
54 42 46 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
57 |
53 56
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → ( ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) |
58 |
37 57
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
59 |
58
|
expcom |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝜑 → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) ) |
60 |
59
|
a2d |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝜑 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) ) |
61 |
36 60
|
syl5bir |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝜑 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ ( 𝜑 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) ) |
62 |
10 14 18 22 26 34 35 61
|
prmind |
⊢ ( 𝑛 ∈ ℕ → ( 𝜑 → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) ) |
63 |
62
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
64 |
6 63
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
65 |
1 2 3 4 64
|
ostthlem1 |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |