| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | qabsabv.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑄 ) | 
						
							| 3 |  | ostthlem1.1 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 4 |  | ostthlem1.2 | ⊢ ( 𝜑  →  𝐺  ∈  𝐴 ) | 
						
							| 5 |  | ostthlem2.3 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 ) ) | 
						
							| 6 |  | eluz2nn | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  →  𝑛  ∈  ℕ ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑝  =  1  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑝  =  1  →  ( 𝐺 ‘ 𝑝 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝑝  =  1  →  ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 )  ↔  ( 𝐹 ‘ 1 )  =  ( 𝐺 ‘ 1 ) ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝑝  =  1  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 ) )  ↔  ( 𝜑  →  ( 𝐹 ‘ 1 )  =  ( 𝐺 ‘ 1 ) ) ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑝  =  𝑦  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑝  =  𝑦  →  ( 𝐺 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 13 | 11 12 | eqeq12d | ⊢ ( 𝑝  =  𝑦  →  ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑝  =  𝑦  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 ) )  ↔  ( 𝜑  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑝  =  𝑧  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑝  =  𝑧  →  ( 𝐺 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 17 | 15 16 | eqeq12d | ⊢ ( 𝑝  =  𝑧  →  ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 )  ↔  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 18 | 17 | imbi2d | ⊢ ( 𝑝  =  𝑧  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 ) )  ↔  ( 𝜑  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑝  =  ( 𝑦  ·  𝑧 )  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑝  =  ( 𝑦  ·  𝑧 )  →  ( 𝐺 ‘ 𝑝 )  =  ( 𝐺 ‘ ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 21 | 19 20 | eqeq12d | ⊢ ( 𝑝  =  ( 𝑦  ·  𝑧 )  →  ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 )  ↔  ( 𝐹 ‘ ( 𝑦  ·  𝑧 ) )  =  ( 𝐺 ‘ ( 𝑦  ·  𝑧 ) ) ) ) | 
						
							| 22 | 21 | imbi2d | ⊢ ( 𝑝  =  ( 𝑦  ·  𝑧 )  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 ) )  ↔  ( 𝜑  →  ( 𝐹 ‘ ( 𝑦  ·  𝑧 ) )  =  ( 𝐺 ‘ ( 𝑦  ·  𝑧 ) ) ) ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑝  =  𝑛  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑝  =  𝑛  →  ( 𝐺 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 25 | 23 24 | eqeq12d | ⊢ ( 𝑝  =  𝑛  →  ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 )  ↔  ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 26 | 25 | imbi2d | ⊢ ( 𝑝  =  𝑛  →  ( ( 𝜑  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 ) )  ↔  ( 𝜑  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 27 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 28 | 1 | qrng1 | ⊢ 1  =  ( 1r ‘ 𝑄 ) | 
						
							| 29 | 1 | qrng0 | ⊢ 0  =  ( 0g ‘ 𝑄 ) | 
						
							| 30 | 2 28 29 | abv1z | ⊢ ( ( 𝐹  ∈  𝐴  ∧  1  ≠  0 )  →  ( 𝐹 ‘ 1 )  =  1 ) | 
						
							| 31 | 3 27 30 | sylancl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  1 ) | 
						
							| 32 | 2 28 29 | abv1z | ⊢ ( ( 𝐺  ∈  𝐴  ∧  1  ≠  0 )  →  ( 𝐺 ‘ 1 )  =  1 ) | 
						
							| 33 | 4 27 32 | sylancl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 )  =  1 ) | 
						
							| 34 | 31 33 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 35 | 5 | expcom | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝜑  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐺 ‘ 𝑝 ) ) ) | 
						
							| 36 |  | jcab | ⊢ ( ( 𝜑  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) )  ↔  ( ( 𝜑  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  ( 𝜑  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 37 |  | oveq12 | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) )  →  ( ( 𝐹 ‘ 𝑦 )  ·  ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 38 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 39 |  | eluzelz | ⊢ ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  →  𝑦  ∈  ℤ ) | 
						
							| 40 | 39 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) ) )  →  𝑦  ∈  ℤ ) | 
						
							| 41 |  | zq | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℚ ) | 
						
							| 42 | 40 41 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) ) )  →  𝑦  ∈  ℚ ) | 
						
							| 43 |  | eluzelz | ⊢ ( 𝑧  ∈  ( ℤ≥ ‘ 2 )  →  𝑧  ∈  ℤ ) | 
						
							| 44 | 43 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) ) )  →  𝑧  ∈  ℤ ) | 
						
							| 45 |  | zq | ⊢ ( 𝑧  ∈  ℤ  →  𝑧  ∈  ℚ ) | 
						
							| 46 | 44 45 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) ) )  →  𝑧  ∈  ℚ ) | 
						
							| 47 | 1 | qrngbas | ⊢ ℚ  =  ( Base ‘ 𝑄 ) | 
						
							| 48 |  | qex | ⊢ ℚ  ∈  V | 
						
							| 49 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 50 | 1 49 | ressmulr | ⊢ ( ℚ  ∈  V  →   ·   =  ( .r ‘ 𝑄 ) ) | 
						
							| 51 | 48 50 | ax-mp | ⊢  ·   =  ( .r ‘ 𝑄 ) | 
						
							| 52 | 2 47 51 | abvmul | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑦  ∈  ℚ  ∧  𝑧  ∈  ℚ )  →  ( 𝐹 ‘ ( 𝑦  ·  𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  ·  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 53 | 38 42 46 52 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) ) )  →  ( 𝐹 ‘ ( 𝑦  ·  𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  ·  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 54 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) ) )  →  𝐺  ∈  𝐴 ) | 
						
							| 55 | 2 47 51 | abvmul | ⊢ ( ( 𝐺  ∈  𝐴  ∧  𝑦  ∈  ℚ  ∧  𝑧  ∈  ℚ )  →  ( 𝐺 ‘ ( 𝑦  ·  𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 56 | 54 42 46 55 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) ) )  →  ( 𝐺 ‘ ( 𝑦  ·  𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 57 | 53 56 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) ) )  →  ( ( 𝐹 ‘ ( 𝑦  ·  𝑧 ) )  =  ( 𝐺 ‘ ( 𝑦  ·  𝑧 ) )  ↔  ( ( 𝐹 ‘ 𝑦 )  ·  ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐺 ‘ 𝑦 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 58 | 37 57 | imbitrrid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) ) )  →  ( ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) )  →  ( 𝐹 ‘ ( 𝑦  ·  𝑧 ) )  =  ( 𝐺 ‘ ( 𝑦  ·  𝑧 ) ) ) ) | 
						
							| 59 | 58 | expcom | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝜑  →  ( ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) )  →  ( 𝐹 ‘ ( 𝑦  ·  𝑧 ) )  =  ( 𝐺 ‘ ( 𝑦  ·  𝑧 ) ) ) ) ) | 
						
							| 60 | 59 | a2d | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝜑  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) )  →  ( 𝜑  →  ( 𝐹 ‘ ( 𝑦  ·  𝑧 ) )  =  ( 𝐺 ‘ ( 𝑦  ·  𝑧 ) ) ) ) ) | 
						
							| 61 | 36 60 | biimtrrid | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ( 𝜑  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  ( 𝜑  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) )  →  ( 𝜑  →  ( 𝐹 ‘ ( 𝑦  ·  𝑧 ) )  =  ( 𝐺 ‘ ( 𝑦  ·  𝑧 ) ) ) ) ) | 
						
							| 62 | 10 14 18 22 26 34 35 61 | prmind | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝜑  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 63 | 62 | impcom | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 64 | 6 63 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 65 | 1 2 3 4 64 | ostthlem1 | ⊢ ( 𝜑  →  𝐹  =  𝐺 ) |