Metamath Proof Explorer


Theorem ostthlem2

Description: Lemma for ostth . Refine ostthlem1 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014) (Revised by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses qrng.q 𝑄 = ( ℂflds ℚ )
qabsabv.a 𝐴 = ( AbsVal ‘ 𝑄 )
ostthlem1.1 ( 𝜑𝐹𝐴 )
ostthlem1.2 ( 𝜑𝐺𝐴 )
ostthlem2.3 ( ( 𝜑𝑝 ∈ ℙ ) → ( 𝐹𝑝 ) = ( 𝐺𝑝 ) )
Assertion ostthlem2 ( 𝜑𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 qrng.q 𝑄 = ( ℂflds ℚ )
2 qabsabv.a 𝐴 = ( AbsVal ‘ 𝑄 )
3 ostthlem1.1 ( 𝜑𝐹𝐴 )
4 ostthlem1.2 ( 𝜑𝐺𝐴 )
5 ostthlem2.3 ( ( 𝜑𝑝 ∈ ℙ ) → ( 𝐹𝑝 ) = ( 𝐺𝑝 ) )
6 eluz2nn ( 𝑛 ∈ ( ℤ ‘ 2 ) → 𝑛 ∈ ℕ )
7 fveq2 ( 𝑝 = 1 → ( 𝐹𝑝 ) = ( 𝐹 ‘ 1 ) )
8 fveq2 ( 𝑝 = 1 → ( 𝐺𝑝 ) = ( 𝐺 ‘ 1 ) )
9 7 8 eqeq12d ( 𝑝 = 1 → ( ( 𝐹𝑝 ) = ( 𝐺𝑝 ) ↔ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) )
10 9 imbi2d ( 𝑝 = 1 → ( ( 𝜑 → ( 𝐹𝑝 ) = ( 𝐺𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) )
11 fveq2 ( 𝑝 = 𝑦 → ( 𝐹𝑝 ) = ( 𝐹𝑦 ) )
12 fveq2 ( 𝑝 = 𝑦 → ( 𝐺𝑝 ) = ( 𝐺𝑦 ) )
13 11 12 eqeq12d ( 𝑝 = 𝑦 → ( ( 𝐹𝑝 ) = ( 𝐺𝑝 ) ↔ ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ) )
14 13 imbi2d ( 𝑝 = 𝑦 → ( ( 𝜑 → ( 𝐹𝑝 ) = ( 𝐺𝑝 ) ) ↔ ( 𝜑 → ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ) ) )
15 fveq2 ( 𝑝 = 𝑧 → ( 𝐹𝑝 ) = ( 𝐹𝑧 ) )
16 fveq2 ( 𝑝 = 𝑧 → ( 𝐺𝑝 ) = ( 𝐺𝑧 ) )
17 15 16 eqeq12d ( 𝑝 = 𝑧 → ( ( 𝐹𝑝 ) = ( 𝐺𝑝 ) ↔ ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
18 17 imbi2d ( 𝑝 = 𝑧 → ( ( 𝜑 → ( 𝐹𝑝 ) = ( 𝐺𝑝 ) ) ↔ ( 𝜑 → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
19 fveq2 ( 𝑝 = ( 𝑦 · 𝑧 ) → ( 𝐹𝑝 ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) )
20 fveq2 ( 𝑝 = ( 𝑦 · 𝑧 ) → ( 𝐺𝑝 ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) )
21 19 20 eqeq12d ( 𝑝 = ( 𝑦 · 𝑧 ) → ( ( 𝐹𝑝 ) = ( 𝐺𝑝 ) ↔ ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) )
22 21 imbi2d ( 𝑝 = ( 𝑦 · 𝑧 ) → ( ( 𝜑 → ( 𝐹𝑝 ) = ( 𝐺𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) )
23 fveq2 ( 𝑝 = 𝑛 → ( 𝐹𝑝 ) = ( 𝐹𝑛 ) )
24 fveq2 ( 𝑝 = 𝑛 → ( 𝐺𝑝 ) = ( 𝐺𝑛 ) )
25 23 24 eqeq12d ( 𝑝 = 𝑛 → ( ( 𝐹𝑝 ) = ( 𝐺𝑝 ) ↔ ( 𝐹𝑛 ) = ( 𝐺𝑛 ) ) )
26 25 imbi2d ( 𝑝 = 𝑛 → ( ( 𝜑 → ( 𝐹𝑝 ) = ( 𝐺𝑝 ) ) ↔ ( 𝜑 → ( 𝐹𝑛 ) = ( 𝐺𝑛 ) ) ) )
27 ax-1ne0 1 ≠ 0
28 1 qrng1 1 = ( 1r𝑄 )
29 1 qrng0 0 = ( 0g𝑄 )
30 2 28 29 abv1z ( ( 𝐹𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) = 1 )
31 3 27 30 sylancl ( 𝜑 → ( 𝐹 ‘ 1 ) = 1 )
32 2 28 29 abv1z ( ( 𝐺𝐴 ∧ 1 ≠ 0 ) → ( 𝐺 ‘ 1 ) = 1 )
33 4 27 32 sylancl ( 𝜑 → ( 𝐺 ‘ 1 ) = 1 )
34 31 33 eqtr4d ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) )
35 5 expcom ( 𝑝 ∈ ℙ → ( 𝜑 → ( 𝐹𝑝 ) = ( 𝐺𝑝 ) ) )
36 jcab ( ( 𝜑 → ( ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ∧ ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) ↔ ( ( 𝜑 → ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ) ∧ ( 𝜑 → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
37 oveq12 ( ( ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ∧ ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) → ( ( 𝐹𝑦 ) · ( 𝐹𝑧 ) ) = ( ( 𝐺𝑦 ) · ( 𝐺𝑧 ) ) )
38 3 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) ) → 𝐹𝐴 )
39 eluzelz ( 𝑦 ∈ ( ℤ ‘ 2 ) → 𝑦 ∈ ℤ )
40 39 ad2antrl ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) ) → 𝑦 ∈ ℤ )
41 zq ( 𝑦 ∈ ℤ → 𝑦 ∈ ℚ )
42 40 41 syl ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) ) → 𝑦 ∈ ℚ )
43 eluzelz ( 𝑧 ∈ ( ℤ ‘ 2 ) → 𝑧 ∈ ℤ )
44 43 ad2antll ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) ) → 𝑧 ∈ ℤ )
45 zq ( 𝑧 ∈ ℤ → 𝑧 ∈ ℚ )
46 44 45 syl ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) ) → 𝑧 ∈ ℚ )
47 1 qrngbas ℚ = ( Base ‘ 𝑄 )
48 qex ℚ ∈ V
49 cnfldmul · = ( .r ‘ ℂfld )
50 1 49 ressmulr ( ℚ ∈ V → · = ( .r𝑄 ) )
51 48 50 ax-mp · = ( .r𝑄 )
52 2 47 51 abvmul ( ( 𝐹𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹𝑦 ) · ( 𝐹𝑧 ) ) )
53 38 42 46 52 syl3anc ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹𝑦 ) · ( 𝐹𝑧 ) ) )
54 4 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) ) → 𝐺𝐴 )
55 2 47 51 abvmul ( ( 𝐺𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ ) → ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐺𝑦 ) · ( 𝐺𝑧 ) ) )
56 54 42 46 55 syl3anc ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) ) → ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐺𝑦 ) · ( 𝐺𝑧 ) ) )
57 53 56 eqeq12d ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) ) → ( ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ↔ ( ( 𝐹𝑦 ) · ( 𝐹𝑧 ) ) = ( ( 𝐺𝑦 ) · ( 𝐺𝑧 ) ) ) )
58 37 57 syl5ibr ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) ) → ( ( ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ∧ ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) )
59 58 expcom ( ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) → ( 𝜑 → ( ( ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ∧ ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) )
60 59 a2d ( ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) → ( ( 𝜑 → ( ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ∧ ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) )
61 36 60 syl5bir ( ( 𝑦 ∈ ( ℤ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ ‘ 2 ) ) → ( ( ( 𝜑 → ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ) ∧ ( 𝜑 → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) )
62 10 14 18 22 26 34 35 61 prmind ( 𝑛 ∈ ℕ → ( 𝜑 → ( 𝐹𝑛 ) = ( 𝐺𝑛 ) ) )
63 62 impcom ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) = ( 𝐺𝑛 ) )
64 6 63 sylan2 ( ( 𝜑𝑛 ∈ ( ℤ ‘ 2 ) ) → ( 𝐹𝑛 ) = ( 𝐺𝑛 ) )
65 1 2 3 4 64 ostthlem1 ( 𝜑𝐹 = 𝐺 )