| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | qabsabv.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑄 ) | 
						
							| 3 |  | ostthlem1.1 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 4 |  | ostthlem1.2 | ⊢ ( 𝜑  →  𝐺  ∈  𝐴 ) | 
						
							| 5 |  | ostthlem1.3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 6 | 1 | qrngbas | ⊢ ℚ  =  ( Base ‘ 𝑄 ) | 
						
							| 7 | 2 6 | abvf | ⊢ ( 𝐹  ∈  𝐴  →  𝐹 : ℚ ⟶ ℝ ) | 
						
							| 8 |  | ffn | ⊢ ( 𝐹 : ℚ ⟶ ℝ  →  𝐹  Fn  ℚ ) | 
						
							| 9 | 3 7 8 | 3syl | ⊢ ( 𝜑  →  𝐹  Fn  ℚ ) | 
						
							| 10 | 2 6 | abvf | ⊢ ( 𝐺  ∈  𝐴  →  𝐺 : ℚ ⟶ ℝ ) | 
						
							| 11 |  | ffn | ⊢ ( 𝐺 : ℚ ⟶ ℝ  →  𝐺  Fn  ℚ ) | 
						
							| 12 | 4 10 11 | 3syl | ⊢ ( 𝜑  →  𝐺  Fn  ℚ ) | 
						
							| 13 |  | elq | ⊢ ( 𝑦  ∈  ℚ  ↔  ∃ 𝑘  ∈  ℤ ∃ 𝑛  ∈  ℕ 𝑦  =  ( 𝑘  /  𝑛 ) ) | 
						
							| 14 | 1 | qdrng | ⊢ 𝑄  ∈  DivRing | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  𝑄  ∈  DivRing ) | 
						
							| 16 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 17 |  | zq | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℚ ) | 
						
							| 18 | 17 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  𝑘  ∈  ℚ ) | 
						
							| 19 |  | nnq | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℚ ) | 
						
							| 20 | 19 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  𝑛  ∈  ℚ ) | 
						
							| 21 |  | nnne0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ≠  0 ) | 
						
							| 22 | 21 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  𝑛  ≠  0 ) | 
						
							| 23 | 1 | qrng0 | ⊢ 0  =  ( 0g ‘ 𝑄 ) | 
						
							| 24 |  | eqid | ⊢ ( /r ‘ 𝑄 )  =  ( /r ‘ 𝑄 ) | 
						
							| 25 | 2 6 23 24 | abvdiv | ⊢ ( ( ( 𝑄  ∈  DivRing  ∧  𝐹  ∈  𝐴 )  ∧  ( 𝑘  ∈  ℚ  ∧  𝑛  ∈  ℚ  ∧  𝑛  ≠  0 ) )  →  ( 𝐹 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) )  =  ( ( 𝐹 ‘ 𝑘 )  /  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 26 | 15 16 18 20 22 25 | syl23anc | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝐹 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) )  =  ( ( 𝐹 ‘ 𝑘 )  /  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 27 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  𝐺  ∈  𝐴 ) | 
						
							| 28 | 2 6 23 24 | abvdiv | ⊢ ( ( ( 𝑄  ∈  DivRing  ∧  𝐺  ∈  𝐴 )  ∧  ( 𝑘  ∈  ℚ  ∧  𝑛  ∈  ℚ  ∧  𝑛  ≠  0 ) )  →  ( 𝐺 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) )  =  ( ( 𝐺 ‘ 𝑘 )  /  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 29 | 15 27 18 20 22 28 | syl23anc | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝐺 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) )  =  ( ( 𝐺 ‘ 𝑘 )  /  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 30 | 2 23 | abv0 | ⊢ ( 𝐹  ∈  𝐴  →  ( 𝐹 ‘ 0 )  =  0 ) | 
						
							| 31 | 3 30 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  =  0 ) | 
						
							| 32 | 2 23 | abv0 | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺 ‘ 0 )  =  0 ) | 
						
							| 33 | 4 32 | syl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 0 )  =  0 ) | 
						
							| 34 | 31 33 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 37 | 35 36 | eqeq12d | ⊢ ( 𝑘  =  0  →  ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 )  ↔  ( 𝐹 ‘ 0 )  =  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 38 | 34 37 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑘  =  0  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  =  0  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑘  =  0 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 41 |  | elnn1uz2 | ⊢ ( 𝑛  ∈  ℕ  ↔  ( 𝑛  =  1  ∨  𝑛  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 42 | 1 | qrng1 | ⊢ 1  =  ( 1r ‘ 𝑄 ) | 
						
							| 43 | 2 42 | abv1 | ⊢ ( ( 𝑄  ∈  DivRing  ∧  𝐹  ∈  𝐴 )  →  ( 𝐹 ‘ 1 )  =  1 ) | 
						
							| 44 | 14 3 43 | sylancr | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  1 ) | 
						
							| 45 | 2 42 | abv1 | ⊢ ( ( 𝑄  ∈  DivRing  ∧  𝐺  ∈  𝐴 )  →  ( 𝐺 ‘ 1 )  =  1 ) | 
						
							| 46 | 14 4 45 | sylancr | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 )  =  1 ) | 
						
							| 47 | 44 46 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 48 |  | fveq2 | ⊢ ( 𝑛  =  1  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑛  =  1  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 50 | 48 49 | eqeq12d | ⊢ ( 𝑛  =  1  →  ( ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 1 )  =  ( 𝐺 ‘ 1 ) ) ) | 
						
							| 51 | 47 50 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑛  =  1  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 52 | 51 | imp | ⊢ ( ( 𝜑  ∧  𝑛  =  1 )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 53 | 52 5 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑛  =  1  ∨  𝑛  ∈  ( ℤ≥ ‘ 2 ) ) )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 54 | 41 53 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 55 | 54 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 57 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 59 | 57 58 | eqeq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 60 | 59 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 61 | 56 60 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑛  =  ( ( invg ‘ 𝑄 ) ‘ 𝑘 )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑛  =  ( ( invg ‘ 𝑄 ) ‘ 𝑘 )  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) ) | 
						
							| 64 | 62 63 | eqeq12d | ⊢ ( 𝑛  =  ( ( invg ‘ 𝑄 ) ‘ 𝑘 )  →  ( ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 )  ↔  ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) )  =  ( 𝐺 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) ) ) | 
						
							| 65 | 55 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  - 𝑘  ∈  ℕ )  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 66 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝑘  ∈  ℚ ) | 
						
							| 67 | 1 | qrngneg | ⊢ ( 𝑘  ∈  ℚ  →  ( ( invg ‘ 𝑄 ) ‘ 𝑘 )  =  - 𝑘 ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ( invg ‘ 𝑄 ) ‘ 𝑘 )  =  - 𝑘 ) | 
						
							| 69 | 68 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ( ( invg ‘ 𝑄 ) ‘ 𝑘 )  ∈  ℕ  ↔  - 𝑘  ∈  ℕ ) ) | 
						
							| 70 | 69 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  - 𝑘  ∈  ℕ )  →  ( ( invg ‘ 𝑄 ) ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 71 | 64 65 70 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  - 𝑘  ∈  ℕ )  →  ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) )  =  ( 𝐺 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) ) | 
						
							| 72 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  - 𝑘  ∈  ℕ )  →  𝐹  ∈  𝐴 ) | 
						
							| 73 | 17 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  - 𝑘  ∈  ℕ )  →  𝑘  ∈  ℚ ) | 
						
							| 74 |  | eqid | ⊢ ( invg ‘ 𝑄 )  =  ( invg ‘ 𝑄 ) | 
						
							| 75 | 2 6 74 | abvneg | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑘  ∈  ℚ )  →  ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 76 | 72 73 75 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  - 𝑘  ∈  ℕ )  →  ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 77 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  - 𝑘  ∈  ℕ )  →  𝐺  ∈  𝐴 ) | 
						
							| 78 | 2 6 74 | abvneg | ⊢ ( ( 𝐺  ∈  𝐴  ∧  𝑘  ∈  ℚ )  →  ( 𝐺 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 79 | 77 73 78 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  - 𝑘  ∈  ℕ )  →  ( 𝐺 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 80 | 71 76 79 | 3eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  - 𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 81 |  | elz | ⊢ ( 𝑘  ∈  ℤ  ↔  ( 𝑘  ∈  ℝ  ∧  ( 𝑘  =  0  ∨  𝑘  ∈  ℕ  ∨  - 𝑘  ∈  ℕ ) ) ) | 
						
							| 82 | 81 | simprbi | ⊢ ( 𝑘  ∈  ℤ  →  ( 𝑘  =  0  ∨  𝑘  ∈  ℕ  ∨  - 𝑘  ∈  ℕ ) ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  =  0  ∨  𝑘  ∈  ℕ  ∨  - 𝑘  ∈  ℕ ) ) | 
						
							| 84 | 40 61 80 83 | mpjao3dan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 85 | 84 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 86 | 54 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 87 | 85 86 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( ( 𝐹 ‘ 𝑘 )  /  ( 𝐹 ‘ 𝑛 ) )  =  ( ( 𝐺 ‘ 𝑘 )  /  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 88 | 29 87 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝐺 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) )  =  ( ( 𝐹 ‘ 𝑘 )  /  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 89 | 26 88 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝐹 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) )  =  ( 𝐺 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) ) ) | 
						
							| 90 | 1 | qrngdiv | ⊢ ( ( 𝑘  ∈  ℚ  ∧  𝑛  ∈  ℚ  ∧  𝑛  ≠  0 )  →  ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 )  =  ( 𝑘  /  𝑛 ) ) | 
						
							| 91 | 18 20 22 90 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 )  =  ( 𝑘  /  𝑛 ) ) | 
						
							| 92 | 91 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝐹 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) )  =  ( 𝐹 ‘ ( 𝑘  /  𝑛 ) ) ) | 
						
							| 93 | 91 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝐺 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) )  =  ( 𝐺 ‘ ( 𝑘  /  𝑛 ) ) ) | 
						
							| 94 | 89 92 93 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝐹 ‘ ( 𝑘  /  𝑛 ) )  =  ( 𝐺 ‘ ( 𝑘  /  𝑛 ) ) ) | 
						
							| 95 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑘  /  𝑛 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑘  /  𝑛 ) ) ) | 
						
							| 96 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑘  /  𝑛 )  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ ( 𝑘  /  𝑛 ) ) ) | 
						
							| 97 | 95 96 | eqeq12d | ⊢ ( 𝑦  =  ( 𝑘  /  𝑛 )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  ↔  ( 𝐹 ‘ ( 𝑘  /  𝑛 ) )  =  ( 𝐺 ‘ ( 𝑘  /  𝑛 ) ) ) ) | 
						
							| 98 | 94 97 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℤ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝑦  =  ( 𝑘  /  𝑛 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 99 | 98 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  ℤ ∃ 𝑛  ∈  ℕ 𝑦  =  ( 𝑘  /  𝑛 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 100 | 13 99 | biimtrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℚ  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 101 | 100 | imp | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℚ )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 102 | 9 12 101 | eqfnfvd | ⊢ ( 𝜑  →  𝐹  =  𝐺 ) |